[ 
https://issues.apache.org/jira/browse/SPARK-6398?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14623036#comment-14623036
 ] 

Feynman Liang commented on SPARK-6398:
--------------------------------------

Possibly redundant with SPARK-7210? Dimensionality's primary contribution to 
the method's utility is the matrix inversion while calculating the pdf in the 
M-step, so a better inversion method will solve this issue as well.

> Improve utility of GaussianMixture for higher dimensional data
> --------------------------------------------------------------
>
>                 Key: SPARK-6398
>                 URL: https://issues.apache.org/jira/browse/SPARK-6398
>             Project: Spark
>          Issue Type: Improvement
>          Components: MLlib
>            Reporter: Travis Galoppo
>            Assignee: Travis Galoppo
>
> The current EM implementation for GaussianMixture protects itself from 
> numerical instability at the expense of utility in high dimensions.  A few 
> options exist for extending utility into higher dimensions.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to