[
https://issues.apache.org/jira/browse/SPARK-5564?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]
Joseph K. Bradley updated SPARK-5564:
-------------------------------------
Target Version/s: 1.6.0 (was: 1.5.0)
> Support sparse LDA solutions
> ----------------------------
>
> Key: SPARK-5564
> URL: https://issues.apache.org/jira/browse/SPARK-5564
> Project: Spark
> Issue Type: Improvement
> Components: MLlib
> Affects Versions: 1.3.0
> Reporter: Joseph K. Bradley
>
> Latent Dirichlet Allocation (LDA) currently requires that the priors’
> concentration parameters be > 1.0. It should support values > 0.0, which
> should encourage sparser topics (phi) and document-topic distributions
> (theta).
> For EM, this will require adding a projection to the M-step, as in: Vorontsov
> and Potapenko. "Tutorial on Probabilistic Topic Modeling : Additive
> Regularization for Stochastic Matrix Factorization." 2014.
--
This message was sent by Atlassian JIRA
(v6.3.4#6332)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]