[
https://issues.apache.org/jira/browse/SPARK-9245?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]
Joseph K. Bradley updated SPARK-9245:
-------------------------------------
Target Version/s: 1.6.0 (was: 1.5.0)
> DistributedLDAModel predict top topic per doc-term instance
> -----------------------------------------------------------
>
> Key: SPARK-9245
> URL: https://issues.apache.org/jira/browse/SPARK-9245
> Project: Spark
> Issue Type: New Feature
> Components: MLlib
> Reporter: Joseph K. Bradley
> Original Estimate: 48h
> Remaining Estimate: 48h
>
> For each (document, term) pair, return top topic. Note that instances of
> (doc, term) pairs within a document (a.k.a. "tokens") are exchangeable, so we
> should provide an estimate per document-term, rather than per token.
> Synopsis for DistributedLDAModel:
> {code}
> /** @return RDD of (doc ID, vector of top topic index for each term) */
> def topTopicAssignments: RDD[(Long, Vector)]
> {code}
> Note that using Vector will let us have a sparse encoding which is
> Java-friendly.
--
This message was sent by Atlassian JIRA
(v6.3.4#6332)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]