[
https://issues.apache.org/jira/browse/SPARK-10251?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]
Reynold Xin updated SPARK-10251:
--------------------------------
Description:
When running a job using kryo serialization and setting
`spark.kryo.registrationRequired=true` some internal classes are not
registered, causing the job to die. This is still a problem when this setting
is false (which is the default) because it makes the space required to store
serialized objects in memory or disk much much more expensive in terms of
runtime and storage space.
{code}
15/08/25 20:28:21 WARN spark.scheduler.TaskSetManager: Lost task 0.0 in stage
0.0 (TID 0, a.b.c.d): java.lang.IllegalArgumentException: Class is not
registered: scala.Tuple2[]
Note: To register this class use: kryo.register(scala.Tuple2[].class);
at com.esotericsoftware.kryo.Kryo.getRegistration(Kryo.java:442)
at
com.esotericsoftware.kryo.util.DefaultClassResolver.writeClass(DefaultClassResolver.java:79)
at com.esotericsoftware.kryo.Kryo.writeClass(Kryo.java:472)
at com.esotericsoftware.kryo.Kryo.writeClassAndObject(Kryo.java:565)
at
org.apache.spark.serializer.KryoSerializerInstance.serialize(KryoSerializer.scala:250)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:236)
at
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
{code}
was:
When running a job using kryo serialization and setting
`spark.kryo.registrationRequired=true` some internal classes are not
registered, causing the job to die. This is still a problem when this setting
is false (which is the default) because it makes the space required to store
serialized objects in memory or disk much much more expensive in terms of
runtime and storage space.
```
15/08/25 20:28:21 WARN spark.scheduler.TaskSetManager: Lost task 0.0 in stage
0.0 (TID 0, a.b.c.d): java.lang.IllegalArgumentException: Class is not
registered: scala.Tuple2[]
Note: To register this class use: kryo.register(scala.Tuple2[].class);
at com.esotericsoftware.kryo.Kryo.getRegistration(Kryo.java:442)
at
com.esotericsoftware.kryo.util.DefaultClassResolver.writeClass(DefaultClassResolver.java:79)
at com.esotericsoftware.kryo.Kryo.writeClass(Kryo.java:472)
at com.esotericsoftware.kryo.Kryo.writeClassAndObject(Kryo.java:565)
at
org.apache.spark.serializer.KryoSerializerInstance.serialize(KryoSerializer.scala:250)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:236)
at
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
```
> Some internal spark classes are not registered with kryo
> --------------------------------------------------------
>
> Key: SPARK-10251
> URL: https://issues.apache.org/jira/browse/SPARK-10251
> Project: Spark
> Issue Type: Bug
> Components: Spark Core
> Affects Versions: 1.4.1
> Reporter: Soren Macbeth
>
> When running a job using kryo serialization and setting
> `spark.kryo.registrationRequired=true` some internal classes are not
> registered, causing the job to die. This is still a problem when this setting
> is false (which is the default) because it makes the space required to store
> serialized objects in memory or disk much much more expensive in terms of
> runtime and storage space.
> {code}
> 15/08/25 20:28:21 WARN spark.scheduler.TaskSetManager: Lost task 0.0 in stage
> 0.0 (TID 0, a.b.c.d): java.lang.IllegalArgumentException: Class is not
> registered: scala.Tuple2[]
> Note: To register this class use: kryo.register(scala.Tuple2[].class);
> at com.esotericsoftware.kryo.Kryo.getRegistration(Kryo.java:442)
> at
> com.esotericsoftware.kryo.util.DefaultClassResolver.writeClass(DefaultClassResolver.java:79)
> at com.esotericsoftware.kryo.Kryo.writeClass(Kryo.java:472)
> at com.esotericsoftware.kryo.Kryo.writeClassAndObject(Kryo.java:565)
> at
> org.apache.spark.serializer.KryoSerializerInstance.serialize(KryoSerializer.scala:250)
> at
> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:236)
> at
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
> at
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
> at java.lang.Thread.run(Thread.java:745)
> {code}
--
This message was sent by Atlassian JIRA
(v6.3.4#6332)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]