[ 
https://issues.apache.org/jira/browse/SPARK-9807?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14712583#comment-14712583
 ] 

Karen Yin-Yee Ng commented on SPARK-9807:
-----------------------------------------

 According to the documentation at 
http://spark.apache.org/docs/latest/api/python/pyspark.sql.html?highlight=createdataframe#pyspark.sql.SQLContext.createDataFrame

it says:
> When schema is a list of column names, the type of each column will be 
> inferred from data.

I did supply the `sqlContext.createDataFrame` method with the column names in 
my example.
Please correct the documentation if the type inference is not supposed to work.

> pyspark.sql.createDataFrame does not infer data type of parsed TSV
> ------------------------------------------------------------------
>
>                 Key: SPARK-9807
>                 URL: https://issues.apache.org/jira/browse/SPARK-9807
>             Project: Spark
>          Issue Type: Bug
>          Components: PySpark
>    Affects Versions: 1.4.1
>         Environment: CentOS 6, Python version 2.7.10, Scala version 2-10 
>            Reporter: Karen Yin-Yee Ng
>   Original Estimate: 24h
>  Remaining Estimate: 24h
>
> I tried parsing a space-separated file from HDFS.
> And using `pyspark.sqlContext.createDataFrame` to convert the parsed lines to 
> a PySpark DataFrame. However, all entries are parsed as string type 
> regardless of what the correct data type is.
> An example of my code and output can be found at:
> https://gist.github.com/karenyyng/a1264d6344c54df4fcc5



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to