[ 
https://issues.apache.org/jira/browse/SPARK-9429?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Sean Owen resolved SPARK-9429.
------------------------------
    Resolution: Not A Problem

> TriangleCount: job aborted due to stage failure
> -----------------------------------------------
>
>                 Key: SPARK-9429
>                 URL: https://issues.apache.org/jira/browse/SPARK-9429
>             Project: Spark
>          Issue Type: Bug
>          Components: GraphX
>            Reporter: YangBaoxing
>
> Hi, all !
> When I run the TriangleCount algorithm on my own data, an exception like "Job 
> aborted to stage failure: Task 0 in stage 4.0 failed 1 times, most recent 
> failure: Lost task 0.0 in stage 4.0 (TID 8, localhost): 
> java.lang.AssertionError: assertion failed" occurred. Then I checked the 
> source code and found that the problem is in line "assert((dblCount & 1) == 
> 0)". And I also found that it run successfully on Array(0L -> 1L, 1L -> 2L, 
> 2L -> 0L) and Array(0L -> 1L, 1L -> 2L, 2L -> 0L, 0L -> 2L, 2L -> 1L, 1L -> 
> 0L) while failed on Array(0L -> 1L, 1L -> 2L, 2L -> 0L, 2L -> 1L). It seems 
> to be more suitable for all unidirectional or bidirectional graph. Is 
> TriangleCount suitable for incomplete bidirectional graph? The complete 
> exception as follows:
> Job aborted due to stage failure: Task 0 in stage 4.0 failed 1 times, most 
> recent failure: Lost task 0.0 in stage 4.0 (TID 8, localhost): 
> java.lang.AssertionError: assertion failed
>       at scala.Predef$.assert(Predef.scala:165)
>       at 
> org.apache.spark.graphx.lib.TriangleCount$$anonfun$7.apply(TriangleCount.scala:90)
>       at 
> org.apache.spark.graphx.lib.TriangleCount$$anonfun$7.apply(TriangleCount.scala:87)
>       at 
> org.apache.spark.graphx.impl.VertexPartitionBaseOps.leftJoin(VertexPartitionBaseOps.scala:140)
>       at 
> org.apache.spark.graphx.impl.VertexRDDImpl$$anonfun$3.apply(VertexRDDImpl.scala:159)
>       at 
> org.apache.spark.graphx.impl.VertexRDDImpl$$anonfun$3.apply(VertexRDDImpl.scala:156)
>       at 
> org.apache.spark.rdd.ZippedPartitionsRDD2.compute(ZippedPartitionsRDD.scala:88)
>       at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277)
>       at org.apache.spark.rdd.RDD.iterator(RDD.scala:244)
>       at org.apache.spark.graphx.VertexRDD.compute(VertexRDD.scala:71)
>       at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277)
>       at org.apache.spark.rdd.RDD.iterator(RDD.scala:244)
>       at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:63)
>       at org.apache.spark.scheduler.Task.run(Task.scala:70)
>       at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
>       at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>       at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>       at java.lang.Thread.run(Thread.java:745)



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to