[ 
https://issues.apache.org/jira/browse/SPARK-11428?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Brad Willard updated SPARK-11428:
---------------------------------
    Description: 
I have data being written into parquet format via spark streaming. The data can 
change slightly so schema merging is required. I load a dataframe like this

{code}
urls = [
    "/streaming/parquet/events/key=2015-10-30*",
    "/streaming/parquet/events/key=2015-10-29*"
]

sdf = sql_context.read.option("mergeSchema", "true").parquet(*urls)
sdf.registerTempTable('events')
{code}

If I print the schema you can see the contested column

{code}
sdf.printSchema()


root
 |-- _id: string (nullable = true)
...
 |-- d__device_s: string (nullable = true)
 |-- d__isActualPageLoad_s: string (nullable = true)
 |-- d__landing_s: string (nullable = true)
 |-- d__lang_s: string (nullable = true)
 |-- d__os_s: string (nullable = true)
 |-- d__performance_i: long (nullable = true)
 |-- d__product_s: string (nullable = true)
 |-- d__refer_s: string (nullable = true)
 |-- d__rk_i: long (nullable = true)
 |-- d__screen_s: string (nullable = true)
 |-- d__submenuName_s: string (nullable = true)
{code}

The column that's in one but not the other file is  d__product_s

So I'm able to run this query and it works fine.
{code}
sql_context.sql('''
    select 
        distinct(d__product_s) 
    from 
        events
    where 
        n = 'view'
''').collect()

[Row(d__product_s=u'website'),
 Row(d__product_s=u'store'),
 Row(d__product_s=None),
 Row(d__product_s=u'page')]

{code}

However if I instead use that column in the where clause things break.

{code}
sql_context.sql('''
    select 
        * 
    from 
        events
    where 
        n = 'view' and d__product_s = 'page'
''').take(1)

---------------------------------------------------------------------------
Py4JJavaError                             Traceback (most recent call last)
<ipython-input-15-04698b649759> in <module>()
      6     where
      7         n = 'frontsite_view' and d__product_s = 'page'
----> 8 ''').take(1)

/root/spark/python/pyspark/sql/dataframe.pyc in take(self, num)
    303         with SCCallSiteSync(self._sc) as css:
    304             port = 
self._sc._jvm.org.apache.spark.sql.execution.EvaluatePython.takeAndServe(
--> 305                 self._jdf, num)
    306         return list(_load_from_socket(port, 
BatchedSerializer(PickleSerializer())))
    307 

/root/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/java_gateway.py in 
__call__(self, *args)
    536         answer = self.gateway_client.send_command(command)
    537         return_value = get_return_value(answer, self.gateway_client,
--> 538                 self.target_id, self.name)
    539 
    540         for temp_arg in temp_args:

/root/spark/python/pyspark/sql/utils.pyc in deco(*a, **kw)
     34     def deco(*a, **kw):
     35         try:
---> 36             return f(*a, **kw)
     37         except py4j.protocol.Py4JJavaError as e:
     38             s = e.java_exception.toString()

/root/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/protocol.py in 
get_return_value(answer, gateway_client, target_id, name)
    298                 raise Py4JJavaError(
    299                     'An error occurred while calling {0}{1}{2}.\n'.
--> 300                     format(target_id, '.', name), value)
    301             else:
    302                 raise Py4JError(

Py4JJavaError: An error occurred while calling 
z:org.apache.spark.sql.execution.EvaluatePython.takeAndServe.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in 
stage 15.0 failed 30 times, most recent failure: Lost task 0.29 in stage 15.0 
(TID 6536, 10.X.X.X): java.lang.IllegalArgumentException: Column [d__product_s] 
was not found in schema!
        at org.apache.parquet.Preconditions.checkArgument(Preconditions.java:55)
        at 
org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.getColumnDescriptor(SchemaCompatibilityValidator.java:190)
        at 
org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.validateColumn(SchemaCompatibilityValidator.java:178)
        at 
org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.validateColumnFilterPredicate(SchemaCompatibilityValidator.java:160)
        at 
org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.visit(SchemaCompatibilityValidator.java:94)
        at 
org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.visit(SchemaCompatibilityValidator.java:59)
        at 
org.apache.parquet.filter2.predicate.Operators$Eq.accept(Operators.java:180)
        at 
org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.visit(SchemaCompatibilityValidator.java:131)
        at 
org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.visit(SchemaCompatibilityValidator.java:59)
        at 
org.apache.parquet.filter2.predicate.Operators$And.accept(Operators.java:308)
        at 
org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.validate(SchemaCompatibilityValidator.java:64)
        at 
org.apache.parquet.filter2.compat.RowGroupFilter.visit(RowGroupFilter.java:59)
        at 
org.apache.parquet.filter2.compat.RowGroupFilter.visit(RowGroupFilter.java:40)
        at 
org.apache.parquet.filter2.compat.FilterCompat$FilterPredicateCompat.accept(FilterCompat.java:126)
        at 
org.apache.parquet.filter2.compat.RowGroupFilter.filterRowGroups(RowGroupFilter.java:46)
        at 
org.apache.parquet.hadoop.ParquetRecordReader.initializeInternalReader(ParquetRecordReader.java:160)
        at 
org.apache.parquet.hadoop.ParquetRecordReader.initialize(ParquetRecordReader.java:140)
        at 
org.apache.spark.rdd.SqlNewHadoopRDD$$anon$1.<init>(SqlNewHadoopRDD.scala:155)
        at 
org.apache.spark.rdd.SqlNewHadoopRDD.compute(SqlNewHadoopRDD.scala:120)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
        at 
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
        at org.apache.spark.rdd.UnionRDD.compute(UnionRDD.scala:87)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
        at 
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
        at 
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
        at org.apache.spark.scheduler.Task.run(Task.scala:88)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
        at 
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
        at 
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
        at java.lang.Thread.run(Thread.java:745)

Driver stacktrace:
        at 
org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1283)
        at 
org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1271)
        at 
org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1270)
        at 
scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
        at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
        at 
org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1270)
        at 
org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:697)
        at 
org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:697)
        at scala.Option.foreach(Option.scala:236)
        at 
org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:697)
        at 
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1496)
        at 
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1458)
        at 
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1447)
        at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
        at 
org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:567)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:1822)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:1835)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:1848)
        at 
org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:215)
        at 
org.apache.spark.sql.execution.Limit.executeCollect(basicOperators.scala:207)
        at 
org.apache.spark.sql.DataFrame$$anonfun$collect$1.apply(DataFrame.scala:1385)
        at 
org.apache.spark.sql.DataFrame$$anonfun$collect$1.apply(DataFrame.scala:1385)
        at 
org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56)
        at 
org.apache.spark.sql.DataFrame.withNewExecutionId(DataFrame.scala:1903)
        at org.apache.spark.sql.DataFrame.collect(DataFrame.scala:1384)
        at org.apache.spark.sql.DataFrame.head(DataFrame.scala:1314)
        at org.apache.spark.sql.DataFrame.take(DataFrame.scala:1377)
        at 
org.apache.spark.sql.execution.EvaluatePython$.takeAndServe(python.scala:127)
        at 
org.apache.spark.sql.execution.EvaluatePython.takeAndServe(python.scala)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at 
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
        at 
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:606)
        at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
        at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:379)
        at py4j.Gateway.invoke(Gateway.java:259)
        at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
        at py4j.commands.CallCommand.execute(CallCommand.java:79)
        at py4j.GatewayConnection.run(GatewayConnection.java:207)
        at java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.IllegalArgumentException: Column [d__product_s] was not 
found in schema!
        at org.apache.parquet.Preconditions.checkArgument(Preconditions.java:55)
        at 
org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.getColumnDescriptor(SchemaCompatibilityValidator.java:190)
        at 
org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.validateColumn(SchemaCompatibilityValidator.java:178)
        at 
org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.validateColumnFilterPredicate(SchemaCompatibilityValidator.java:160)
        at 
org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.visit(SchemaCompatibilityValidator.java:94)
        at 
org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.visit(SchemaCompatibilityValidator.java:59)
        at 
org.apache.parquet.filter2.predicate.Operators$Eq.accept(Operators.java:180)
        at 
org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.visit(SchemaCompatibilityValidator.java:131)
        at 
org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.visit(SchemaCompatibilityValidator.java:59)
        at 
org.apache.parquet.filter2.predicate.Operators$And.accept(Operators.java:308)
        at 
org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.validate(SchemaCompatibilityValidator.java:64)
        at 
org.apache.parquet.filter2.compat.RowGroupFilter.visit(RowGroupFilter.java:59)
        at 
org.apache.parquet.filter2.compat.RowGroupFilter.visit(RowGroupFilter.java:40)
        at 
org.apache.parquet.filter2.compat.FilterCompat$FilterPredicateCompat.accept(FilterCompat.java:126)
        at 
org.apache.parquet.filter2.compat.RowGroupFilter.filterRowGroups(RowGroupFilter.java:46)
        at 
org.apache.parquet.hadoop.ParquetRecordReader.initializeInternalReader(ParquetRecordReader.java:160)
        at 
org.apache.parquet.hadoop.ParquetRecordReader.initialize(ParquetRecordReader.java:140)
        at 
org.apache.spark.rdd.SqlNewHadoopRDD$$anon$1.<init>(SqlNewHadoopRDD.scala:155)
        at 
org.apache.spark.rdd.SqlNewHadoopRDD.compute(SqlNewHadoopRDD.scala:120)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
        at 
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
        at org.apache.spark.rdd.UnionRDD.compute(UnionRDD.scala:87)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
        at 
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
        at 
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
        at org.apache.spark.scheduler.Task.run(Task.scala:88)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
        at 
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
        at 
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
        ... 1 more

{code}

I get the same error also when attempting to write the same query with the 
dataframe api as well.

{code}
sdf.where(sdf.d__product_s == 'page').take(1)
{code}

  was:
I have data being written into parquet format via spark streaming. The data can 
change slightly so schema merging is required. I load a dataframe like this

{code}
urls = [
    "/streaming/parquet/events/key=2015-10-30*",
    "/streaming/parquet/events/key=2015-10-29*"
]

sdf = sql_context.read.option("mergeSchema", "true").parquet(*urls)
sdf.registerTempTable('events')
{code}

If I print the schema you can see the contested column

{code}
sdf.printSchema()


root
 |-- _id: string (nullable = true)
...
 |-- d__device_s: string (nullable = true)
 |-- d__isActualPageLoad_s: string (nullable = true)
 |-- d__landing_s: string (nullable = true)
 |-- d__lang_s: string (nullable = true)
 |-- d__os_s: string (nullable = true)
 |-- d__performance_i: long (nullable = true)
 |-- d__product_s: string (nullable = true)
 |-- d__refer_s: string (nullable = true)
 |-- d__rk_i: long (nullable = true)
 |-- d__screen_s: string (nullable = true)
 |-- d__submenuName_s: string (nullable = true)
{code}

The column that's in one but not the other file is  d__product_s

So I'm able to run this query and it works fine.
{code}
sql_context.sql('''
    select 
        distinct(d__product_s) 
    from 
        events
    where 
        n = 'view'
''').collect()

[Row(d__product_s=u'website'),
 Row(d__product_s=u'store'),
 Row(d__product_s=None),
 Row(d__product_s=u'page')]

{code}

However if I instead use that column in the where clause things break.

{code}
sql_context.sql('''
    select 
        * 
    from 
        events
    where 
        n = 'view' and d__product_s = 'page'
''').take(1)

---------------------------------------------------------------------------
Py4JJavaError                             Traceback (most recent call last)
<ipython-input-15-04698b649759> in <module>()
      6     where
      7         n = 'frontsite_view' and d__product_s = 'page'
----> 8 ''').take(1)

/root/spark/python/pyspark/sql/dataframe.pyc in take(self, num)
    303         with SCCallSiteSync(self._sc) as css:
    304             port = 
self._sc._jvm.org.apache.spark.sql.execution.EvaluatePython.takeAndServe(
--> 305                 self._jdf, num)
    306         return list(_load_from_socket(port, 
BatchedSerializer(PickleSerializer())))
    307 

/root/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/java_gateway.py in 
__call__(self, *args)
    536         answer = self.gateway_client.send_command(command)
    537         return_value = get_return_value(answer, self.gateway_client,
--> 538                 self.target_id, self.name)
    539 
    540         for temp_arg in temp_args:

/root/spark/python/pyspark/sql/utils.pyc in deco(*a, **kw)
     34     def deco(*a, **kw):
     35         try:
---> 36             return f(*a, **kw)
     37         except py4j.protocol.Py4JJavaError as e:
     38             s = e.java_exception.toString()

/root/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/protocol.py in 
get_return_value(answer, gateway_client, target_id, name)
    298                 raise Py4JJavaError(
    299                     'An error occurred while calling {0}{1}{2}.\n'.
--> 300                     format(target_id, '.', name), value)
    301             else:
    302                 raise Py4JError(

Py4JJavaError: An error occurred while calling 
z:org.apache.spark.sql.execution.EvaluatePython.takeAndServe.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in 
stage 15.0 failed 30 times, most recent failure: Lost task 0.29 in stage 15.0 
(TID 6536, 10.149.1.168): java.lang.IllegalArgumentException: Column 
[d__product_s] was not found in schema!
        at org.apache.parquet.Preconditions.checkArgument(Preconditions.java:55)
        at 
org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.getColumnDescriptor(SchemaCompatibilityValidator.java:190)
        at 
org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.validateColumn(SchemaCompatibilityValidator.java:178)
        at 
org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.validateColumnFilterPredicate(SchemaCompatibilityValidator.java:160)
        at 
org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.visit(SchemaCompatibilityValidator.java:94)
        at 
org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.visit(SchemaCompatibilityValidator.java:59)
        at 
org.apache.parquet.filter2.predicate.Operators$Eq.accept(Operators.java:180)
        at 
org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.visit(SchemaCompatibilityValidator.java:131)
        at 
org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.visit(SchemaCompatibilityValidator.java:59)
        at 
org.apache.parquet.filter2.predicate.Operators$And.accept(Operators.java:308)
        at 
org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.validate(SchemaCompatibilityValidator.java:64)
        at 
org.apache.parquet.filter2.compat.RowGroupFilter.visit(RowGroupFilter.java:59)
        at 
org.apache.parquet.filter2.compat.RowGroupFilter.visit(RowGroupFilter.java:40)
        at 
org.apache.parquet.filter2.compat.FilterCompat$FilterPredicateCompat.accept(FilterCompat.java:126)
        at 
org.apache.parquet.filter2.compat.RowGroupFilter.filterRowGroups(RowGroupFilter.java:46)
        at 
org.apache.parquet.hadoop.ParquetRecordReader.initializeInternalReader(ParquetRecordReader.java:160)
        at 
org.apache.parquet.hadoop.ParquetRecordReader.initialize(ParquetRecordReader.java:140)
        at 
org.apache.spark.rdd.SqlNewHadoopRDD$$anon$1.<init>(SqlNewHadoopRDD.scala:155)
        at 
org.apache.spark.rdd.SqlNewHadoopRDD.compute(SqlNewHadoopRDD.scala:120)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
        at 
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
        at org.apache.spark.rdd.UnionRDD.compute(UnionRDD.scala:87)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
        at 
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
        at 
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
        at org.apache.spark.scheduler.Task.run(Task.scala:88)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
        at 
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
        at 
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
        at java.lang.Thread.run(Thread.java:745)

Driver stacktrace:
        at 
org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1283)
        at 
org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1271)
        at 
org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1270)
        at 
scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
        at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
        at 
org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1270)
        at 
org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:697)
        at 
org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:697)
        at scala.Option.foreach(Option.scala:236)
        at 
org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:697)
        at 
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1496)
        at 
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1458)
        at 
org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1447)
        at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
        at 
org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:567)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:1822)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:1835)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:1848)
        at 
org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:215)
        at 
org.apache.spark.sql.execution.Limit.executeCollect(basicOperators.scala:207)
        at 
org.apache.spark.sql.DataFrame$$anonfun$collect$1.apply(DataFrame.scala:1385)
        at 
org.apache.spark.sql.DataFrame$$anonfun$collect$1.apply(DataFrame.scala:1385)
        at 
org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56)
        at 
org.apache.spark.sql.DataFrame.withNewExecutionId(DataFrame.scala:1903)
        at org.apache.spark.sql.DataFrame.collect(DataFrame.scala:1384)
        at org.apache.spark.sql.DataFrame.head(DataFrame.scala:1314)
        at org.apache.spark.sql.DataFrame.take(DataFrame.scala:1377)
        at 
org.apache.spark.sql.execution.EvaluatePython$.takeAndServe(python.scala:127)
        at 
org.apache.spark.sql.execution.EvaluatePython.takeAndServe(python.scala)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at 
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
        at 
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:606)
        at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
        at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:379)
        at py4j.Gateway.invoke(Gateway.java:259)
        at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
        at py4j.commands.CallCommand.execute(CallCommand.java:79)
        at py4j.GatewayConnection.run(GatewayConnection.java:207)
        at java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.IllegalArgumentException: Column [d__product_s] was not 
found in schema!
        at org.apache.parquet.Preconditions.checkArgument(Preconditions.java:55)
        at 
org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.getColumnDescriptor(SchemaCompatibilityValidator.java:190)
        at 
org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.validateColumn(SchemaCompatibilityValidator.java:178)
        at 
org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.validateColumnFilterPredicate(SchemaCompatibilityValidator.java:160)
        at 
org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.visit(SchemaCompatibilityValidator.java:94)
        at 
org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.visit(SchemaCompatibilityValidator.java:59)
        at 
org.apache.parquet.filter2.predicate.Operators$Eq.accept(Operators.java:180)
        at 
org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.visit(SchemaCompatibilityValidator.java:131)
        at 
org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.visit(SchemaCompatibilityValidator.java:59)
        at 
org.apache.parquet.filter2.predicate.Operators$And.accept(Operators.java:308)
        at 
org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.validate(SchemaCompatibilityValidator.java:64)
        at 
org.apache.parquet.filter2.compat.RowGroupFilter.visit(RowGroupFilter.java:59)
        at 
org.apache.parquet.filter2.compat.RowGroupFilter.visit(RowGroupFilter.java:40)
        at 
org.apache.parquet.filter2.compat.FilterCompat$FilterPredicateCompat.accept(FilterCompat.java:126)
        at 
org.apache.parquet.filter2.compat.RowGroupFilter.filterRowGroups(RowGroupFilter.java:46)
        at 
org.apache.parquet.hadoop.ParquetRecordReader.initializeInternalReader(ParquetRecordReader.java:160)
        at 
org.apache.parquet.hadoop.ParquetRecordReader.initialize(ParquetRecordReader.java:140)
        at 
org.apache.spark.rdd.SqlNewHadoopRDD$$anon$1.<init>(SqlNewHadoopRDD.scala:155)
        at 
org.apache.spark.rdd.SqlNewHadoopRDD.compute(SqlNewHadoopRDD.scala:120)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
        at 
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
        at org.apache.spark.rdd.UnionRDD.compute(UnionRDD.scala:87)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
        at 
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
        at 
org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
        at org.apache.spark.scheduler.Task.run(Task.scala:88)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
        at 
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
        at 
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
        ... 1 more

{code}

I get the same error also when attempting to write the same query with the 
dataframe api as well.

{code}
sdf.where(sdf.d__product_s == 'page').take(1)
{code}


> Schema Merging Broken for Some Queries
> --------------------------------------
>
>                 Key: SPARK-11428
>                 URL: https://issues.apache.org/jira/browse/SPARK-11428
>             Project: Spark
>          Issue Type: Bug
>          Components: PySpark, Spark Core
>    Affects Versions: 1.5.1
>         Environment: AWS,
>            Reporter: Brad Willard
>              Labels: dataframe, parquet, pyspark, schema, sparksql
>
> I have data being written into parquet format via spark streaming. The data 
> can change slightly so schema merging is required. I load a dataframe like 
> this
> {code}
> urls = [
>     "/streaming/parquet/events/key=2015-10-30*",
>     "/streaming/parquet/events/key=2015-10-29*"
> ]
> sdf = sql_context.read.option("mergeSchema", "true").parquet(*urls)
> sdf.registerTempTable('events')
> {code}
> If I print the schema you can see the contested column
> {code}
> sdf.printSchema()
> root
>  |-- _id: string (nullable = true)
> ...
>  |-- d__device_s: string (nullable = true)
>  |-- d__isActualPageLoad_s: string (nullable = true)
>  |-- d__landing_s: string (nullable = true)
>  |-- d__lang_s: string (nullable = true)
>  |-- d__os_s: string (nullable = true)
>  |-- d__performance_i: long (nullable = true)
>  |-- d__product_s: string (nullable = true)
>  |-- d__refer_s: string (nullable = true)
>  |-- d__rk_i: long (nullable = true)
>  |-- d__screen_s: string (nullable = true)
>  |-- d__submenuName_s: string (nullable = true)
> {code}
> The column that's in one but not the other file is  d__product_s
> So I'm able to run this query and it works fine.
> {code}
> sql_context.sql('''
>     select 
>         distinct(d__product_s) 
>     from 
>         events
>     where 
>         n = 'view'
> ''').collect()
> [Row(d__product_s=u'website'),
>  Row(d__product_s=u'store'),
>  Row(d__product_s=None),
>  Row(d__product_s=u'page')]
> {code}
> However if I instead use that column in the where clause things break.
> {code}
> sql_context.sql('''
>     select 
>         * 
>     from 
>         events
>     where 
>         n = 'view' and d__product_s = 'page'
> ''').take(1)
> ---------------------------------------------------------------------------
> Py4JJavaError                             Traceback (most recent call last)
> <ipython-input-15-04698b649759> in <module>()
>       6     where
>       7         n = 'frontsite_view' and d__product_s = 'page'
> ----> 8 ''').take(1)
> /root/spark/python/pyspark/sql/dataframe.pyc in take(self, num)
>     303         with SCCallSiteSync(self._sc) as css:
>     304             port = 
> self._sc._jvm.org.apache.spark.sql.execution.EvaluatePython.takeAndServe(
> --> 305                 self._jdf, num)
>     306         return list(_load_from_socket(port, 
> BatchedSerializer(PickleSerializer())))
>     307 
> /root/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/java_gateway.py in 
> __call__(self, *args)
>     536         answer = self.gateway_client.send_command(command)
>     537         return_value = get_return_value(answer, self.gateway_client,
> --> 538                 self.target_id, self.name)
>     539 
>     540         for temp_arg in temp_args:
> /root/spark/python/pyspark/sql/utils.pyc in deco(*a, **kw)
>      34     def deco(*a, **kw):
>      35         try:
> ---> 36             return f(*a, **kw)
>      37         except py4j.protocol.Py4JJavaError as e:
>      38             s = e.java_exception.toString()
> /root/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/protocol.py in 
> get_return_value(answer, gateway_client, target_id, name)
>     298                 raise Py4JJavaError(
>     299                     'An error occurred while calling {0}{1}{2}.\n'.
> --> 300                     format(target_id, '.', name), value)
>     301             else:
>     302                 raise Py4JError(
> Py4JJavaError: An error occurred while calling 
> z:org.apache.spark.sql.execution.EvaluatePython.takeAndServe.
> : org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 
> in stage 15.0 failed 30 times, most recent failure: Lost task 0.29 in stage 
> 15.0 (TID 6536, 10.X.X.X): java.lang.IllegalArgumentException: Column 
> [d__product_s] was not found in schema!
>       at org.apache.parquet.Preconditions.checkArgument(Preconditions.java:55)
>       at 
> org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.getColumnDescriptor(SchemaCompatibilityValidator.java:190)
>       at 
> org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.validateColumn(SchemaCompatibilityValidator.java:178)
>       at 
> org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.validateColumnFilterPredicate(SchemaCompatibilityValidator.java:160)
>       at 
> org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.visit(SchemaCompatibilityValidator.java:94)
>       at 
> org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.visit(SchemaCompatibilityValidator.java:59)
>       at 
> org.apache.parquet.filter2.predicate.Operators$Eq.accept(Operators.java:180)
>       at 
> org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.visit(SchemaCompatibilityValidator.java:131)
>       at 
> org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.visit(SchemaCompatibilityValidator.java:59)
>       at 
> org.apache.parquet.filter2.predicate.Operators$And.accept(Operators.java:308)
>       at 
> org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.validate(SchemaCompatibilityValidator.java:64)
>       at 
> org.apache.parquet.filter2.compat.RowGroupFilter.visit(RowGroupFilter.java:59)
>       at 
> org.apache.parquet.filter2.compat.RowGroupFilter.visit(RowGroupFilter.java:40)
>       at 
> org.apache.parquet.filter2.compat.FilterCompat$FilterPredicateCompat.accept(FilterCompat.java:126)
>       at 
> org.apache.parquet.filter2.compat.RowGroupFilter.filterRowGroups(RowGroupFilter.java:46)
>       at 
> org.apache.parquet.hadoop.ParquetRecordReader.initializeInternalReader(ParquetRecordReader.java:160)
>       at 
> org.apache.parquet.hadoop.ParquetRecordReader.initialize(ParquetRecordReader.java:140)
>       at 
> org.apache.spark.rdd.SqlNewHadoopRDD$$anon$1.<init>(SqlNewHadoopRDD.scala:155)
>       at 
> org.apache.spark.rdd.SqlNewHadoopRDD.compute(SqlNewHadoopRDD.scala:120)
>       at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
>       at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
>       at 
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>       at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
>       at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
>       at org.apache.spark.rdd.UnionRDD.compute(UnionRDD.scala:87)
>       at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
>       at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
>       at 
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>       at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
>       at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
>       at 
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>       at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
>       at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
>       at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
>       at org.apache.spark.scheduler.Task.run(Task.scala:88)
>       at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
>       at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>       at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>       at java.lang.Thread.run(Thread.java:745)
> Driver stacktrace:
>       at 
> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1283)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1271)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1270)
>       at 
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>       at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
>       at 
> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1270)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:697)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:697)
>       at scala.Option.foreach(Option.scala:236)
>       at 
> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:697)
>       at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1496)
>       at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1458)
>       at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1447)
>       at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
>       at 
> org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:567)
>       at org.apache.spark.SparkContext.runJob(SparkContext.scala:1822)
>       at org.apache.spark.SparkContext.runJob(SparkContext.scala:1835)
>       at org.apache.spark.SparkContext.runJob(SparkContext.scala:1848)
>       at 
> org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:215)
>       at 
> org.apache.spark.sql.execution.Limit.executeCollect(basicOperators.scala:207)
>       at 
> org.apache.spark.sql.DataFrame$$anonfun$collect$1.apply(DataFrame.scala:1385)
>       at 
> org.apache.spark.sql.DataFrame$$anonfun$collect$1.apply(DataFrame.scala:1385)
>       at 
> org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56)
>       at 
> org.apache.spark.sql.DataFrame.withNewExecutionId(DataFrame.scala:1903)
>       at org.apache.spark.sql.DataFrame.collect(DataFrame.scala:1384)
>       at org.apache.spark.sql.DataFrame.head(DataFrame.scala:1314)
>       at org.apache.spark.sql.DataFrame.take(DataFrame.scala:1377)
>       at 
> org.apache.spark.sql.execution.EvaluatePython$.takeAndServe(python.scala:127)
>       at 
> org.apache.spark.sql.execution.EvaluatePython.takeAndServe(python.scala)
>       at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
>       at 
> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
>       at 
> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
>       at java.lang.reflect.Method.invoke(Method.java:606)
>       at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
>       at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:379)
>       at py4j.Gateway.invoke(Gateway.java:259)
>       at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
>       at py4j.commands.CallCommand.execute(CallCommand.java:79)
>       at py4j.GatewayConnection.run(GatewayConnection.java:207)
>       at java.lang.Thread.run(Thread.java:745)
> Caused by: java.lang.IllegalArgumentException: Column [d__product_s] was not 
> found in schema!
>       at org.apache.parquet.Preconditions.checkArgument(Preconditions.java:55)
>       at 
> org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.getColumnDescriptor(SchemaCompatibilityValidator.java:190)
>       at 
> org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.validateColumn(SchemaCompatibilityValidator.java:178)
>       at 
> org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.validateColumnFilterPredicate(SchemaCompatibilityValidator.java:160)
>       at 
> org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.visit(SchemaCompatibilityValidator.java:94)
>       at 
> org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.visit(SchemaCompatibilityValidator.java:59)
>       at 
> org.apache.parquet.filter2.predicate.Operators$Eq.accept(Operators.java:180)
>       at 
> org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.visit(SchemaCompatibilityValidator.java:131)
>       at 
> org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.visit(SchemaCompatibilityValidator.java:59)
>       at 
> org.apache.parquet.filter2.predicate.Operators$And.accept(Operators.java:308)
>       at 
> org.apache.parquet.filter2.predicate.SchemaCompatibilityValidator.validate(SchemaCompatibilityValidator.java:64)
>       at 
> org.apache.parquet.filter2.compat.RowGroupFilter.visit(RowGroupFilter.java:59)
>       at 
> org.apache.parquet.filter2.compat.RowGroupFilter.visit(RowGroupFilter.java:40)
>       at 
> org.apache.parquet.filter2.compat.FilterCompat$FilterPredicateCompat.accept(FilterCompat.java:126)
>       at 
> org.apache.parquet.filter2.compat.RowGroupFilter.filterRowGroups(RowGroupFilter.java:46)
>       at 
> org.apache.parquet.hadoop.ParquetRecordReader.initializeInternalReader(ParquetRecordReader.java:160)
>       at 
> org.apache.parquet.hadoop.ParquetRecordReader.initialize(ParquetRecordReader.java:140)
>       at 
> org.apache.spark.rdd.SqlNewHadoopRDD$$anon$1.<init>(SqlNewHadoopRDD.scala:155)
>       at 
> org.apache.spark.rdd.SqlNewHadoopRDD.compute(SqlNewHadoopRDD.scala:120)
>       at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
>       at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
>       at 
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>       at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
>       at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
>       at org.apache.spark.rdd.UnionRDD.compute(UnionRDD.scala:87)
>       at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
>       at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
>       at 
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>       at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
>       at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
>       at 
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>       at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
>       at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
>       at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
>       at org.apache.spark.scheduler.Task.run(Task.scala:88)
>       at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
>       at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>       at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>       ... 1 more
> {code}
> I get the same error also when attempting to write the same query with the 
> dataframe api as well.
> {code}
> sdf.where(sdf.d__product_s == 'page').take(1)
> {code}



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to