[ 
https://issues.apache.org/jira/browse/SPARK-11439?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=14993281#comment-14993281
 ] 

Nakul Jindal commented on SPARK-11439:
--------------------------------------

[info] - linear regression model training summary *** FAILED *** (966 
milliseconds)
[info]   Expected 0.009955579236410212 and 0.00972035 to be within 1.0E-5 using 
relative tolerance. (TestingUtils.scala:78)
[info]   org.scalatest.exceptions.TestFailedException:
[info]   at 
org.apache.spark.mllib.util.TestingUtils$DoubleWithAlmostEquals.$tilde$eq$eq(TestingUtils.scala:78)
[info]   at 
org.apache.spark.ml.regression.LinearRegressionSuite$$anonfun$11$$anonfun$apply$mcV$sp$9.apply(LinearRegressionSuite.scala:606)
[info]   at 
org.apache.spark.ml.regression.LinearRegressionSuite$$anonfun$11$$anonfun$apply$mcV$sp$9.apply(LinearRegressionSuite.scala:559)
.....



> Optimization of creating sparse feature without dense one
> ---------------------------------------------------------
>
>                 Key: SPARK-11439
>                 URL: https://issues.apache.org/jira/browse/SPARK-11439
>             Project: Spark
>          Issue Type: Improvement
>          Components: ML
>            Reporter: Kai Sasaki
>            Priority: Minor
>
> Currently, sparse feature generated in {{LinearDataGenerator}} needs to 
> create dense vectors once. It is cost efficient to prevent from generating 
> dense feature when creating sparse features.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to