[ 
https://issues.apache.org/jira/browse/SPARK-11725?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15003960#comment-15003960
 ] 

Herman van Hovell commented on SPARK-11725:
-------------------------------------------

-1 is the default value for an Int in the code generator. That shouldn't leak 
into a UDF.

The fact remains is that using a primitive parameter in a UDF and calling that 
UDF with a nullable column is not good practice and should be avoided.

> Let UDF to handle null value
> ----------------------------
>
>                 Key: SPARK-11725
>                 URL: https://issues.apache.org/jira/browse/SPARK-11725
>             Project: Spark
>          Issue Type: Improvement
>          Components: SQL
>            Reporter: Jeff Zhang
>
> I notice that currently spark will take the long field as -1 if it is null.
> Here's the sample code.
> {code}
> sqlContext.udf.register("f", (x:Int)=>x+1)
> df.withColumn("age2", expr("f(age)")).show()
> //////////////// Output ///////////////////////
> +----+-------+----+
> | age|   name|age2|
> +----+-------+----+
> |null|Michael|   0|
> |  30|   Andy|  31|
> |  19| Justin|  20|
> +----+-------+----+
> {code}
> I think for the null value we have 3 options
> * Use a special value to represent it (what spark does now)
> * Always return null if the udf input has null value argument 
> * Let udf itself to handle null
> I would prefer the third option 



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to