[ 
https://issues.apache.org/jira/browse/SPARK-11751?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15006377#comment-15006377
 ] 

Sean Owen commented on SPARK-11751:
-----------------------------------

I tend to agree with this. You could remove this, or leave it in with the 
caveat that it isn't actually currently supported, just to make people aware of 
the existence of closure vs other serialization.

> Doc describe error in the "Spark Streaming Programming Guide" page
> ------------------------------------------------------------------
>
>                 Key: SPARK-11751
>                 URL: https://issues.apache.org/jira/browse/SPARK-11751
>             Project: Spark
>          Issue Type: Documentation
>          Components: Documentation
>    Affects Versions: 1.4.1, 1.5.0, 1.5.1, 1.5.2
>            Reporter: yangping wu
>            Priority: Trivial
>
> In the *Task Launching Overheads* section,
> {quote}*Task Serialization*: Using Kryo serialization for serializing tasks 
> can reduce the task sizes, and therefore reduce the time taken to send them 
> to the slaves.{quote}
> As we known *Task Serialization* is configuration by 
> *spark.closure.serializer* parameter, but currently only the Java serializer 
> is supported. If we set *spark.closure.serializer*  to 
> *org.apache.spark.serializer.KryoSerializer*, then this will throw a 
> exception as follow:
> {code}
> org.apache.spark.SparkException: Job aborted due to stage failure: Task 516 
> in stage 0.0 failed 4 times, most recent failure: Lost task 516.3 in stage 
> 0.0 (TID 21, spark-cluster.data.com): java.io.EOFException
>       at java.io.DataInputStream.readInt(DataInputStream.java:392)
>       at 
> org.apache.spark.scheduler.Task$.deserializeWithDependencies(Task.scala:188)
>       at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:192)
>       at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>       at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>       at java.lang.Thread.run(Thread.java:744)
> Driver stacktrace:
>       at 
> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1273)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1264)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1263)
>       at 
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>       at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
>       at 
> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1263)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:730)
>       at 
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:730)
>       at scala.Option.foreach(Option.scala:236)
>       at 
> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:730)
>       at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1457)
>       at 
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1418)
>       at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
> {code}



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to