Michael Armbrust created SPARK-12562:
----------------------------------------
Summary: DataFrame.write.format("text") requires the column name
to be called value
Key: SPARK-12562
URL: https://issues.apache.org/jira/browse/SPARK-12562
Project: Spark
Issue Type: Bug
Components: SQL
Affects Versions: 1.6.0
Reporter: Michael Armbrust
We should support writing any DataFrame that has a single string column,
independent of the name.
{code}
wiki.select("text")
.limit(10000)
.write
.format("text")
.mode("overwrite")
.save("/home/michael/wiki.txt")
{code}
{code}
org.apache.spark.sql.AnalysisException: cannot resolve 'value' given input
columns text;
at
org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.failAnalysis(package.scala:42)
at
org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:60)
at
org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:57)
at
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:319)
at
org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:319)
at
org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:53)
at
org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:318)
at
org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionUp$1(QueryPlan.scala:107)
at
org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2(QueryPlan.scala:117)
at
org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2$1.apply(QueryPlan.scala:121)
at
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at scala.collection.immutable.List.foreach(List.scala:318)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
at scala.collection.AbstractTraversable.map(Traversable.scala:105)
at
org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2(QueryPlan.scala:121)
at
org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$2.apply(QueryPlan.scala:125)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$class.foreach(Iterator.scala:727)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
at
scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
at
scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
at
scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
at scala.collection.AbstractIterator.to(Iterator.scala:1157)
at
scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
at
scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
at
org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionsUp(QueryPlan.scala:125)
at
org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:57)
at
org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:50)
at
org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:105)
at
org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.checkAnalysis(CheckAnalysis.scala:50)
at
org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis(Analyzer.scala:44)
at
org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:34)
at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:133)
at org.apache.spark.sql.DataFrame$.apply(DataFrame.scala:52)
at
org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelation.run(InsertIntoHadoopFsRelation.scala:106)
at
org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult$lzycompute(commands.scala:58)
at
org.apache.spark.sql.execution.ExecutedCommand.sideEffectResult(commands.scala:56)
at
org.apache.spark.sql.execution.ExecutedCommand.doExecute(commands.scala:70)
at
org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132)
at
org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130)
at
org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
at
org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:55)
at
org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:55)
at
org.apache.spark.sql.execution.datasources.ResolvedDataSource$.apply(ResolvedDataSource.scala:256)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:148)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:139)
{code}
--
This message was sent by Atlassian JIRA
(v6.3.4#6332)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]