Robert Dodier created SPARK-12815:
-------------------------------------

             Summary: Compute Wilcoxon-Mann-Whitney rank sum statistic
                 Key: SPARK-12815
                 URL: https://issues.apache.org/jira/browse/SPARK-12815
             Project: Spark
          Issue Type: New Feature
          Components: ML, MLlib
            Reporter: Robert Dodier
            Priority: Minor


The Wilcoxon-Mann-Whitney rank sum statistic (also known by other permutations 
of those names) is a useful assessment of relevance of an input field for a 
classification problem. As such it would nice to have in ML or MLlib (I don't 
know what's a more suitable package for it).

I have created a Spark package, 
[spark-wilcoxon|http://spark-packages.org/package/robert-dodier/spark-wilcoxon],
 to demonstrate an implementation. If there is interest in this issue, I'll 
create a pull request. spark-wilcoxon computes the scaled rank sum statistic 
`U/(n0*n1)`, where `U` is the rank sum statistic and `n0` and `n1` are the 
numbers of data in class 0 and class 1, respectively.

There exists already the Spearman rank correlation statistic in MLlib (in 
...mllib.stat.correlation.SpearmanCorrelation) but that is not equivalent to 
the WMW statistic -- the one cannot be derived from the other because the 
Spearman correlation contains squares of rank differences and the WMW contains 
only first-order terms.

See the Wikipedia article [Mann-Whitney U 
test|https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test] for formulas 
and background information. At this point, I am proposing only to compute the 
rank sum statistic, not to implement the significance test.



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

---------------------------------------------------------------------
To unsubscribe, e-mail: issues-unsubscr...@spark.apache.org
For additional commands, e-mail: issues-h...@spark.apache.org

Reply via email to