[
https://issues.apache.org/jira/browse/SPARK-13087?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15127377#comment-15127377
]
Apache Spark commented on SPARK-13087:
--------------------------------------
User 'marmbrus' has created a pull request for this issue:
https://github.com/apache/spark/pull/11011
> Grouping by a complex expression may lead to incorrect AttributeReferences in
> aggregations
> ------------------------------------------------------------------------------------------
>
> Key: SPARK-13087
> URL: https://issues.apache.org/jira/browse/SPARK-13087
> Project: Spark
> Issue Type: Bug
> Components: SQL
> Affects Versions: 1.6.0
> Reporter: Mark Hamstra
> Priority: Critical
>
> This is a regression from 1.5.
> An example of the failure:
> Working with this table...
> {code}
> 0: jdbc:hive2://10.1.3.203:10000> DESCRIBE
> csd_0ae1abc1_a3af_4c63_95b0_9599faca6c3d;
> +-----------------------+------------+----------+--+
> | col_name | data_type | comment |
> +-----------------------+------------+----------+--+
> | c_date | timestamp | NULL |
> | c_count | int | NULL |
> | c_location_fips_code | string | NULL |
> | c_airtemp | float | NULL |
> | c_dewtemp | float | NULL |
> | c_pressure | int | NULL |
> | c_rain | float | NULL |
> | c_snow | float | NULL |
> +-----------------------+------------+----------+--+
> {code}
> ...and this query (which isn't necessarily all that sensical or useful, but
> has been adapted from a similarly failing query that uses a custom UDF where
> the Spark SQL built-in `day` function has been substituted into this query)...
> {code}
> SELECT day ( c_date ) AS c_date, percentile_approx(c_rain, 0.5) AS
> c_expr_1256887735 FROM csd_0ae1abc1_a3af_4c63_95b0_9599faca6c3d GROUP BY day
> ( c_date ) ORDER BY c_date;
> {code}
> Spark 1.5 produces the expected results without error.
> In Spark 1.6, this plan is produced...
> {code}
> Exchange rangepartitioning(c_date#63009 ASC,16), None
> +- SortBasedAggregate(key=[dayofmonth(cast(c_date#63011 as date))#63020],
> functions=[(hiveudaffunction(HiveFunctionWrapper(org.apache.hadoop.hive.ql.udf.generic.GenericUDAFPercentileApprox,org.apache.hadoop.hive.ql.udf.generic.Gene
> ricUDAFPercentileApprox@6f211801),c_rain#63017,0.5,false,0,0),mode=Complete,isDistinct=false)],
> output=[c_date#63009,c_expr_1256887735#63010])
> +- ConvertToSafe
> +- !Sort [dayofmonth(cast(c_date#63011 as date))#63020 ASC], false, 0
> +- !TungstenExchange hashpartitioning(dayofmonth(cast(c_date#63011
> as date))#63020,16), None
> +- ConvertToUnsafe
> +- HiveTableScan [c_date#63011,c_rain#63017],
> MetastoreRelation default, csd_0ae1abc1_a3af_4c63_95b0_9599faca6c3d, None
> {code}
> ...which fails with a TreeNodeException and stack traces that include this...
> {code}
> Caused by: ! org.apache.spark.SparkException: Job aborted due to stage
> failure: Task 0 in stage 2842.0 failed 4 times, most recent failure: Lost
> task 0.3 in stage 2842.0 (TID 15007, ip-10-1-1-59.dev.clearstory.com):
> org.apache.spark.sql.catalyst.errors.package$TreeNodeException: Binding
> attribute, tree: dayofmonth(cast(c_date#63011 as date))#63020
> at
> org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:49)
> at
> org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:86)
> at
> org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1.applyOrElse(BoundAttribute.scala:85)
> at
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:259)
> at
> org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:259)
> at
> org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:69)
> at
> org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:258)
> at
> org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:249)
> at
> org.apache.spark.sql.catalyst.expressions.BindReferences$.bindReference(BoundAttribute.scala:85)
> at
> org.apache.spark.sql.catalyst.expressions.InterpretedMutableProjection$$anonfun$$init$$2.apply(Projection.scala:62)
> at
> org.apache.spark.sql.catalyst.expressions.InterpretedMutableProjection$$anonfun$$init$$2.apply(Projection.scala:62)
> at
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
> at
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
> at scala.collection.immutable.List.foreach(List.scala:318)
> at
> scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
> at scala.collection.AbstractTraversable.map(Traversable.scala:105)
> at
> org.apache.spark.sql.catalyst.expressions.InterpretedMutableProjection.<init>(Projection.scala:62)
> at
> org.apache.spark.sql.execution.SparkPlan$$anonfun$newMutableProjection$1.apply(SparkPlan.scala:254)
> at
> org.apache.spark.sql.execution.SparkPlan$$anonfun$newMutableProjection$1.apply(SparkPlan.scala:254)
> at
> org.apache.spark.sql.execution.Exchange.org$apache$spark$sql$execution$Exchange$$getPartitionKeyExtractor$1(Exchange.scala:196)
> at
> org.apache.spark.sql.execution.Exchange$$anonfun$3.apply(Exchange.scala:208)
> at
> org.apache.spark.sql.execution.Exchange$$anonfun$3.apply(Exchange.scala:207)
> at
> org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$21.apply(RDD.scala:728)
> at
> org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$21.apply(RDD.scala:728)
> at
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
> at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
> at
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
> at
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
> at org.apache.spark.scheduler.Task.run(Task.scala:89)
> at
> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
> at
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
> at
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
> at java.lang.Thread.run(Thread.java:745)
> Caused by: java.lang.RuntimeException: Couldn't find
> dayofmonth(cast(c_date#63011 as date))#63020 in [c_date#63011,c_rain#63017]
> at scala.sys.package$.error(package.scala:27)
> at
> org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:92)
> at
> org.apache.spark.sql.catalyst.expressions.BindReferences$$anonfun$bindReference$1$$anonfun$applyOrElse$1.apply(BoundAttribute.scala:86)
> at
> org.apache.spark.sql.catalyst.errors.package$.attachTree(package.scala:48)
> ... 33 more
> {code}
> It is possible to work around the problem by adding a Project node in case an
> aggregation is relying on aliases missing in the child plan
> (https://github.com/mbautin/spark/commit/2e99064b42a6dddf6b94b989c744a1308aacaee2),
> but it seems there should be a deeper fix that prevents the problem instead
> of covering for it.
> [~yhuai] I think this problem crept in with the changes for SPARK-9830
--
This message was sent by Atlassian JIRA
(v6.3.4#6332)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]