[
https://issues.apache.org/jira/browse/SPARK-13774?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15187103#comment-15187103
]
Sean Owen commented on SPARK-13774:
-----------------------------------
I can't reproduce this. I just get
{code}
org.apache.hadoop.mapred.InvalidInputException: Input path does not exist:
file:/Users/srowen/Documents/spark/file-path-is-incorrect.csv
{code}
Is this your exact example?
> IllegalArgumentException: Can not create a Path from an empty string for
> incorrect file path
> --------------------------------------------------------------------------------------------
>
> Key: SPARK-13774
> URL: https://issues.apache.org/jira/browse/SPARK-13774
> Project: Spark
> Issue Type: Bug
> Components: SQL
> Affects Versions: 2.0.0
> Environment: today's build
> Reporter: Jacek Laskowski
> Priority: Minor
>
> Think the error message should be improved for files that could not be found.
> The {{Path}} seems given.
> {code}
> Welcome to
> ____ __
> / __/__ ___ _____/ /__
> _\ \/ _ \/ _ `/ __/ '_/
> /___/ .__/\_,_/_/ /_/\_\ version 2.0.0-SNAPSHOT
> /_/
> Using Scala version 2.11.7 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_74)
> Type in expressions to have them evaluated.
> Type :help for more information.
> scala> sqlContext.read.format("csv").load("file-path-is-incorrect.csv")
> java.lang.IllegalArgumentException: Can not create a Path from an empty string
> at org.apache.hadoop.fs.Path.checkPathArg(Path.java:126)
> at org.apache.hadoop.fs.Path.<init>(Path.java:134)
> at org.apache.hadoop.util.StringUtils.stringToPath(StringUtils.java:245)
> at
> org.apache.hadoop.mapred.FileInputFormat.setInputPaths(FileInputFormat.java:411)
> at
> org.apache.spark.SparkContext$$anonfun$hadoopFile$1$$anonfun$32.apply(SparkContext.scala:976)
> at
> org.apache.spark.SparkContext$$anonfun$hadoopFile$1$$anonfun$32.apply(SparkContext.scala:976)
> at
> org.apache.spark.rdd.HadoopRDD$$anonfun$getJobConf$6.apply(HadoopRDD.scala:177)
> at
> org.apache.spark.rdd.HadoopRDD$$anonfun$getJobConf$6.apply(HadoopRDD.scala:177)
> at scala.Option.map(Option.scala:146)
> at org.apache.spark.rdd.HadoopRDD.getJobConf(HadoopRDD.scala:177)
> at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:196)
> at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:242)
> at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:240)
> at scala.Option.getOrElse(Option.scala:121)
> at org.apache.spark.rdd.RDD.partitions(RDD.scala:240)
> at
> org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
> at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:242)
> at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:240)
> at scala.Option.getOrElse(Option.scala:121)
> at org.apache.spark.rdd.RDD.partitions(RDD.scala:240)
> at
> org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
> at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:242)
> at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:240)
> at scala.Option.getOrElse(Option.scala:121)
> at org.apache.spark.rdd.RDD.partitions(RDD.scala:240)
> at org.apache.spark.rdd.RDD$$anonfun$take$1.apply(RDD.scala:1251)
> at
> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
> at
> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
> at org.apache.spark.rdd.RDD.withScope(RDD.scala:352)
> at org.apache.spark.rdd.RDD.take(RDD.scala:1246)
> at org.apache.spark.rdd.RDD$$anonfun$first$1.apply(RDD.scala:1286)
> at
> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
> at
> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
> at org.apache.spark.rdd.RDD.withScope(RDD.scala:352)
> at org.apache.spark.rdd.RDD.first(RDD.scala:1285)
> at
> org.apache.spark.sql.execution.datasources.csv.DefaultSource.findFirstLine(DefaultSource.scala:156)
> at
> org.apache.spark.sql.execution.datasources.csv.DefaultSource.inferSchema(DefaultSource.scala:58)
> at
> org.apache.spark.sql.execution.datasources.DataSource$$anonfun$13.apply(DataSource.scala:213)
> at
> org.apache.spark.sql.execution.datasources.DataSource$$anonfun$13.apply(DataSource.scala:213)
> at scala.Option.orElse(Option.scala:289)
> at
> org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:212)
> at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:131)
> at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:141)
> ... 49 elided
> {code}
--
This message was sent by Atlassian JIRA
(v6.3.4#6332)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]