[
https://issues.apache.org/jira/browse/SPARK-14031?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15205300#comment-15205300
]
Vincent Ohprecio edited comment on SPARK-14031 at 3/21/16 10:39 PM:
--------------------------------------------------------------------
GC accounts for less than 0.3-1.5% of CPU time.
Here is the sampler report for CPU:
com.univorcity.parsers.common.input.DefaultCharAppender.<init>() ... 64%
io.netty.channel.nio.NioEventLoop.select() ... 21%
org.spark-project.jetty.io.nio.SelectorManager$SelectSet.doSelect() ... 10%
org.apache.sparl.sql.execution.datasources.csv.LineCsvWriter.writeRow() ... 4%
was (Author: vohprecio):
GC accounts for less than 0.3-1.5% of CPU time.
Here is the hotspot report for CPU:
com.univorcity.parsers.common.input.DefaultCharAppender.<init>() ... 64%
io.netty.channel.nio.NioEventLoop.select() ... 21%
org.spark-project.jetty.io.nio.SelectorManager$SelectSet.doSelect() ... 10%
org.apache.sparl.sql.execution.datasources.csv.LineCsvWriter.writeRow() ... 4%
> Dataframe to csv IO, system performance enters high CPU state and write
> operation takes 1 hour to complete
> ----------------------------------------------------------------------------------------------------------
>
> Key: SPARK-14031
> URL: https://issues.apache.org/jira/browse/SPARK-14031
> Project: Spark
> Issue Type: Bug
> Components: Spark Shell
> Affects Versions: 2.0.0
> Environment: MACOSX 10.11.2 Macbook Pro 16g - 2.2 GHz Intel Core i7
> -1TB and Ubuntu14.04 Vagrant 4 Cores 8g
> Reporter: Vincent Ohprecio
> Priority: Minor
> Attachments: visualVMscreenshot.png
>
>
> Summary
> When using spark-assembly-2.0.0/spark-shell trying to write out results of
> dataframe to csv, system performance enters high CPU state and write
> operation takes 1 hour to complete.
> * Affecting: [Stage 5:> (0 + 2) / 21]
> * Stage 5 elapsed time 3488272270000ns
> In comparison, tests where conducted using 1.4, 1.5, 1.6 with same code/data
> and Stage5 csv write times where between 2 - 22 seconds.
> In addition, Parquet (Stage 3) write tests 1.4, 1.5, 1.6 and 2.0 where
> similar between 2 - 22 seconds.
> Files
> 1. Data File is "2008.csv"
> 2. Data file download http://stat-computing.org/dataexpo/2009/the-data.html
> 3. Code https://gist.github.com/bigsnarfdude/581b780ce85d7aaecbcb
> Observation 1 - Setup
> High CPU and 58 minute average completion time
> * MACOSX 10.11.2
> * Macbook Pro 16g - 2.2 GHz Intel Core i7 -1TB
> * spark-assembly-2.0.0
> * spark-csv_2.11-1.4
> * Code: https://gist.github.com/bigsnarfdude/581b780ce85d7aaecbcb
> Observation 2 - Setup
> High CPU and waited over hour for csv write but didnt wait to complete
> * Ubuntu14.04
> * 4cores 8gb
> * spark-assembly-2.0.0
> * spark-csv_2.11-1.4
> Code Output: https://gist.github.com/bigsnarfdude/930f5832c231c3d39651
--
This message was sent by Atlassian JIRA
(v6.3.4#6332)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]