[ 
https://issues.apache.org/jira/browse/SYSTEMML-919?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Mike Dusenberry resolved SYSTEMML-919.
--------------------------------------
       Resolution: Fixed
         Assignee: Matthias Boehm
    Fix Version/s: SystemML 0.11

> OOM Error in `RDDConverterUtilsExt`
> -----------------------------------
>
>                 Key: SYSTEMML-919
>                 URL: https://issues.apache.org/jira/browse/SYSTEMML-919
>             Project: SystemML
>          Issue Type: Bug
>            Reporter: Mike Dusenberry
>            Assignee: Matthias Boehm
>             Fix For: SystemML 0.11
>
>
> While running a custom algorithm on ~7TB data on Spark, I ran into the 
> following OOM error.  I am using the new MLContext and passing in Spark 
> DataFrames with no provided dimensions.  It's a difficult setup to reproduce, 
> but we should look into this to see if there are improvements that could 
> avoid OOM situations.
> Stack trace:
> {code}
> java.lang.OutOfMemoryError: Java heap space
>       at java.util.Arrays.copyOf(Arrays.java:3181)
>       at java.util.ArrayList.grow(ArrayList.java:261)
>       at java.util.ArrayList.ensureExplicitCapacity(ArrayList.java:235)
>       at java.util.ArrayList.ensureCapacityInternal(ArrayList.java:227)
>       at java.util.ArrayList.add(ArrayList.java:458)
>       at 
> org.apache.sysml.runtime.instructions.spark.utils.RDDConverterUtilsExt$RowToBinaryBlockFunctionHelper.flushBlocksToList(RDDConverterUtilsExt.java:926)
>       at 
> org.apache.sysml.runtime.instructions.spark.utils.RDDConverterUtilsExt$RowToBinaryBlockFunctionHelper.convertToBinaryBlock(RDDConverterUtilsExt.java:862)
>       at 
> org.apache.sysml.runtime.instructions.spark.utils.RDDConverterUtilsExt$DataFrameToBinaryBlockFunction.call(RDDConverterUtilsExt.java:587)
>       at 
> org.apache.sysml.runtime.instructions.spark.utils.RDDConverterUtilsExt$DataFrameToBinaryBlockFunction.call(RDDConverterUtilsExt.java:574)
>       at 
> org.apache.spark.api.java.JavaRDDLike$$anonfun$fn$7$1.apply(JavaRDDLike.scala:192)
>       at 
> org.apache.spark.api.java.JavaRDDLike$$anonfun$fn$7$1.apply(JavaRDDLike.scala:192)
>       at 
> org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710)
>       at 
> org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710)
>       at 
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>       at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
>       at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
>       at 
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
>       at 
> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
>       at org.apache.spark.scheduler.Task.run(Task.scala:89)
>       at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
>       at 
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
>       at 
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
>       at java.lang.Thread.run(Thread.java:745)
> {code}



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

Reply via email to