[ 
https://issues.apache.org/jira/browse/SYSTEMML-1072?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15623765#comment-15623765
 ] 

Glenn Weidner commented on SYSTEMML-1072:
-----------------------------------------

Thank you Matthias for the feedback and pointer to SYSTEMML-1026!  I've 
repeated the runMultiLogReg dense 8G experiment and got consistent results for 
consecutive runs:

-- Running runMultiLogReg on 1M_1k_dense (all configs)
MultiLogReg train ict=0 on mbperftest/multinomial/X1M_1k_dense_k150: 141
MultiLogReg train ict=1 on mbperftest/multinomial/X1M_1k_dense_k150: 169
MultiLogReg train ict=2 on mbperftest/multinomial/X1M_1k_dense_k150: 414

-- Running runMultiLogReg on 1M_1k_dense (all configs)
MultiLogReg train ict=0 on mbperftest/multinomial/X1M_1k_dense_k150: 145
MultiLogReg train ict=1 on mbperftest/multinomial/X1M_1k_dense_k150: 165
MultiLogReg train ict=2 on mbperftest/multinomial/X1M_1k_dense_k150: 417

My sparkDML.sh is configured such that spark-submit uses below options:

$SPARK_HOME/bin/spark-submit
     --master yarn-client
     --driver-memory 20G
     --num-executors 6
     --executor-memory 55G
     --executor-cores 24
     --driver-java-options "-server -Xms20g"
     --conf spark.executor.extraJavaOptions="-server -Xmn5500m"

I will repeat binomial runMultiLogReg for 80G.  If consistent results, then I 
think I can close this JIRA.  I had opened since there seemed to be a bigger 
difference when compared to Oct 12/13 times which might not be appropriate 
comparison.

> Perftest: MultiLogReg performance variation
> -------------------------------------------
>
>                 Key: SYSTEMML-1072
>                 URL: https://issues.apache.org/jira/browse/SYSTEMML-1072
>             Project: SystemML
>          Issue Type: Bug
>            Reporter: Glenn Weidner
>
> Times (8G, k150):
> SPARK RUN MULTINOMIAL EXPERIMENTS: Thu Oct 27
> -- Running runMultiLogReg on 1M_1k_dense (all configs)
> MultiLogReg train ict=0 on mbperftest/multinomial/X1M_1k_dense_k150: 141
> MultiLogReg train ict=1 on mbperftest/multinomial/X1M_1k_dense_k150: 166
> MultiLogReg train ict=2 on mbperftest/multinomial/X1M_1k_dense_k150: 417
> SPARK RUN MULTINOMIAL EXPERIMENTS: Wed Oct 12
> -- Running runMultiLogReg on 1M_1k_dense (all configs)
> MultiLogReg train ict=0 on mbperftest/multinomial/X1M_1k_dense_k150: 127
> MultiLogReg train ict=1 on mbperftest/multinomial/X1M_1k_dense_k150: 151
> MultiLogReg train ict=2 on mbperftest/multinomial/X1M_1k_dense_k150: 354
> Times (80G, dense):
> SPARK RUN BINOMIAL EXPERIMENTS: Wed Oct 26
> -- Running runMultiLogReg on 10M_1k_dense (all configs): 
> MultiLogReg train ict=0 on mbperftest/binomial/X10M_1k_dense: 143
> MultiLogReg train ict=1 on mbperftest/binomial/X10M_1k_dense: 147
> MultiLogReg train ict=2 on mbperftest/binomial/X10M_1k_dense: 138
> SPARK RUN BINOMIAL EXPERIMENTS: Wed Oct 12
> -- Running runMultiLogReg on 10M_1k_dense (all configs): 
> MultiLogReg train ict=0 on mbperftest/binomial/X10M_1k_dense: 90
> MultiLogReg train ict=1 on mbperftest/binomial/X10M_1k_dense: 84
> MultiLogReg train ict=2 on mbperftest/binomial/X10M_1k_dense: 94
> Times (80G, k150):
> SPARK RUN MULTINOMIAL EXPERIMENTS: Wed Oct 26
> -- Running runMultiLogReg on 10M_1k_dense (all configs)
> MultiLogReg train ict=0 on mbperftest/multinomial/X10M_1k_dense_k150: 1300
> MultiLogReg train ict=1 on mbperftest/multinomial/X10M_1k_dense_k150: 1265
> MultiLogReg train ict=2 on mbperftest/multinomial/X10M_1k_dense_k150: 1677
> SPARK RUN MULTINOMIAL EXPERIMENTS: Wed Oct 12
> -- Running runMultiLogReg on 10M_1k_dense (all configs)
> MultiLogReg train ict=0 on mbperftest/multinomial/X10M_1k_dense_k150: 1639
> MultiLogReg train ict=1 on mbperftest/multinomial/X10M_1k_dense_k150: 1790
> MultiLogReg train ict=2 on mbperftest/multinomial/X10M_1k_dense_k150: 2541



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

Reply via email to