[ https://issues.apache.org/jira/browse/TEZ-4442?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Authur Wang updated TEZ-4442: ----------------------------- Environment: we use CDP7.1.7SP1 with the 0.91 tez version (was: we use CDP7.1.7SP1 with the 0.91 tez version, and parameters are as follows: beeline -u 'jdbc:hive2://bg21146.hadoop.com:10000/default;principal=hive/[bg21146.hadoop....@bg.com|mailto:bg21146.hadoop....@bg.com]' --hiveconf tez.queue.name=root.000kjb.bdhmgmas_bas -e " create temporary function get_card_rank as 'com.unionpay.spark.udf.GenericUDFCupsCardMediaProc' using jar 'hdfs:///user/lib/spark-udf-0.0.1-SNAPSHOT.jar'; set tez.am.log.level=debug; set tez.am.resource.memory.mb=8192; set hive.tez.container.size=8192; set tez.task.resource.memory.mb=2048; set tez.runtime.io.sort.mb=1200; set hive.auto.convert.join.noconditionaltask.size=500000000; set tez.runtime.unordered.output.buffer.size-mb=800; set tez.grouping.min-size=33554432; set tez.grouping.max-size=536870912; set hive.tez.auto.reducer.parallelism=true; set hive.tez.min.partition.factor=0.25; set hive.tez.max.partition.factor=2.0; set hive.exec.reducers.bytes.per.reducer=268435456; set mapreduce.map.memory.mb=4096; set ipc.maximum.response.length=1536000000; select get_card_rank(ext_pri_acct_no) as ext_card_media_proc_md, coun(*) from bs_comdb.tmp_bscom_glhis_ct_settle_dtl_bas_swt a where a.hp_settle_dt = '20200910' group by get_card_rank(ext_pri_acct_no) ; ") > tez unable to control the memory size when UDF occupies 100MB memory > --------------------------------------------------------------------- > > Key: TEZ-4442 > URL: https://issues.apache.org/jira/browse/TEZ-4442 > Project: Apache Tez > Issue Type: Bug > Affects Versions: 0.9.1 > Environment: we use CDP7.1.7SP1 with the 0.91 tez version > Reporter: Authur Wang > Priority: Critical > > We have a UDF which loads about 5 million records into memory, and > matchs the data in the memory according to the user's input, and finally > return the output. Each input record of the UDF will lead to one output. > Based on heapdump analysis, this udf occupies about 100MB of > memory. The UDF runs stably in hive on MR, hive on spark and native spark, > and only needs about 4GB of memory for that situation. However, if we use tez > engine, we adjust the memory from 4G to 8g, the task will fail. Even if we > adjust the memory to 12g, the task will fail with a high probability. Why > does tez engine need so much memory compared to Mr and spark? Is there a good > tuning method to control the amount of memory ? > -- This message was sent by Atlassian Jira (v8.20.10#820010)