[ 
https://issues.apache.org/jira/browse/LUCENE-2089?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=12790392#action_12790392
 ] 

Robert Muir commented on LUCENE-2089:
-------------------------------------

thanks for the pointer Earwin, its very useful to have something else to look 
at.

Mark, definitely not losing interest on finishing, but mostly recovering from 
the brain damage that paper caused me.

I will say i ran stats on various dictionaries, and I think the following:
* I think making the defaults for fuzzy (0.5 similarity with 1024 n-best 
expansions) is very challenging. I actually think the pq size (1024 n-best 
expansions) is the big kicker here, I mean it seems a little absurd to me... If 
this was smaller we could support lower n and even not worry about the 0.5 
similarity so much, because we would fill up the pq quicker and n would drop 
fast. But I think adjusting both defaults might make sense.
* I think we should try to find ways to figuring out what good defaults should 
be, and this shouldnt be based just on performance (i.e. ocr-damaged test 
collection, something like that).

So anyway, I'm really happy with how far this is right now, because if you look 
at the performance numbers at the top, we were spending 300ms building DFAs for 
56 character-long words, and now this is 5ms. just need to go to the next step.



> explore using automaton for fuzzyquery
> --------------------------------------
>
>                 Key: LUCENE-2089
>                 URL: https://issues.apache.org/jira/browse/LUCENE-2089
>             Project: Lucene - Java
>          Issue Type: Wish
>          Components: Search
>            Reporter: Robert Muir
>            Assignee: Mark Miller
>            Priority: Minor
>         Attachments: LUCENE-2089.patch, Moman-0.2.1.tar.gz, TestFuzzy.java
>
>
> Mark brought this up on LUCENE-1606 (i will assign this to him, I know he is 
> itching to write that nasty algorithm)
> we can optimize fuzzyquery by using AutomatonTermsEnum, here is my idea
> * up front, calculate the maximum required K edits needed to match the users 
> supplied float threshold.
> * for at least small common E up to some max K (1,2,3, etc) we should create 
> a DFA for each E. 
> if the required E is above our supported max, we use "dumb mode" at first (no 
> seeking, no DFA, just brute force like now).
> As the pq fills, we swap progressively lower DFAs into the enum, based upon 
> the lowest score in the pq.
> This should work well on avg, at high E, you will typically fill the pq very 
> quickly since you will match many terms. 
> This not only provides a mechanism to switch to more efficient DFAs during 
> enumeration, but also to switch from "dumb mode" to "smart mode".
> i modified my wildcard benchmark to generate random fuzzy queries.
> * Pattern: 7N stands for NNNNNNN, etc.
> * AvgMS_DFA: this is the time spent creating the automaton (constructor)
> ||Pattern||Iter||AvgHits||AvgMS(old)||AvgMS (new,total)||AvgMS_DFA||
> |7N|10|64.0|4155.9|38.6|20.3|
> |14N|10|0.0|2511.6|46.0|37.9| 
> |28N|10|0.0|2506.3|93.0|86.6|
> |56N|10|0.0|2524.5|304.4|298.5|
> as you can see, this prototype is no good yet, because it creates the DFA in 
> a slow way. right now it creates an NFA, and all this wasted time is in 
> NFA->DFA conversion.
> So, for a very long string, it just gets worse and worse. This has nothing to 
> do with lucene, and here you can see, the TermEnum is fast (AvgMS - 
> AvgMS_DFA), there is no problem there.
> instead we should just build a DFA to begin with, maybe with this paper: 
> http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.652
> we can precompute the tables with that algorithm up to some reasonable K, and 
> then I think we are ok.
> the paper references using http://portal.acm.org/citation.cfm?id=135907 for 
> linear minimization, if someone wants to implement this they should not worry 
> about minimization.
> in fact, we need to at some point determine if AutomatonQuery should even 
> minimize FSM's at all, or if it is simply enough for them to be deterministic 
> with no transitions to dead states. (The only code that actually assumes 
> minimal DFA is the "Dumb" vs "Smart" heuristic and this can be rewritten as a 
> summation easily). we need to benchmark really complex DFAs (i.e. write a 
> regex benchmark) to figure out if minimization is even helping right now.

-- 
This message is automatically generated by JIRA.
-
You can reply to this email to add a comment to the issue online.


---------------------------------------------------------------------
To unsubscribe, e-mail: java-dev-unsubscr...@lucene.apache.org
For additional commands, e-mail: java-dev-h...@lucene.apache.org

Reply via email to