
Copyright  1997 Architecture Projects Management Limited
The copyright is held on behalf of the sponsors for the time being of the ANSA Workprogramme.

Poseidon House
Castle Park
Cambridge CB3 0RD
United Kingdom

TELEPHONE: Cambridge (01223) 515010
INTERNATIONAL: +44 1223 515010

FAX: +44 1223 359779
E-MAIL: apm@ansa.co.uk

ANSA Phase III

Distribution:

Supersedes :

Superseded by :

APM.1931.01 Approved 24th January 1997

Technical Report

Reflective Java

Zhixue Wu and Scarlet Schwiderski

Abstract

 This is a presentation document for Reflective Java.

The purpose of Reflective Java is to make some features of Java reflective, thus enabling Java-
powered system to be customised dynamically, flexibly and transparently to suit a particular
application. Method calls are made open-ended; a simple pre-processor that translates reflective
programs into standard Java programs and generates classes for binding a Java object to its
metaobject.

This presentation at first gives an overview of Reflective Java and then demonstrates its benefits
via an application, namely an object transaction service.

1
APM.1931.01

Reflective Java

Zhixue Wu

Scarlet Schwiderski

28 Jan. 1997

2
APM.1931.01

Observations
Requirements:
• The one size fits all design strategy becomes obsolete

- mobile computing, internet programming, and multimedia applications
- different considerations and requirements

• System software must be made flexible and customisable at run-time
- many attributes of the application environment vary from time to time, and

from place to place

Technologies:
• Object-oriented programming and language theory has suggested

methods for building flexible system software components
- Java
- reflection and metaobject protocol (MOP)

• It’s time to transfer these ideas to mature technology

3
APM.1931.01

Java
• A simple, object oriented , distributed, interpreted, robust, safe,

architecture neutral , portable , high performance, multithreaded,
dynamic language

• Advantages
- object-oriented: separate interface from implementation
- architecture neutral: write once, run anywhere
- dynamic loading and linking

• Problems
- application cannot be decoupled from the choice of non-functional

capabilities
- application is not portable to every infrastructure
- application cannot adjust its behaviour according to conditions

4
APM.1931.01

Reflective Java
• Enable a Java-powered system to be customised according to the

particular application requirements and the run-time environment
- statically at compile time
- dynamically at run-time
- flexibly
- transparently

• Make Java reflective
- without any change to the language itself
- without any change to its compiler
- without any change to its virtual machine

5
APM.1931.01

Reflective Method Invocation
• Method invocations are interceptable and changeable by users

- metaBefore operation
- metaAfter operation

• Meta data for classes, objects, and parameters is accessible at meta
level

• Values of parameters can be manipulated at meta level

void credit(double amount)
{balance = balance + amount;}

set_lock; release_lock;

free_back_up;meta level

application
level

back_up;

6
APM.1931.01

Idea
• Clear separation of functional and non-functional requirements
• Functional requirements are satisfied by application objects
• Non-functional requirements are satisfied by metaobjects
• Non-functional capabilities are added to an application object by

binding it to an appropriate metaobject
• Actual behaviour of an application object can be changed by binding

it to a different metaobject
• Binding can be changed dynamically

persistent transaction replication

application
object

metaobjectmetaobject metaobject

binding
switch

7
APM.1931.01

Implementation
• Application classes are implemented by application developers
• Metaobject classes are implemented by system developers
• End-users describe which non-functional capability should be added

to an application through a simple declarative language
• A preprocessor generates a reflection class
• The end-user application performs functions through the reflection

class

application class metaobject class

reflection class

user class by end-user

preprocessor

binding spec.
data flow

by application programmer by system developer

inherit
has an instance
use

8
APM.1931.01

Benefits
• Easy to upgrade product in order to adapt to changes: either in

hardware or in application requirements

• Flexibility to customise policies dynamically to suit run-time
environment

• High-level transparency to applications

• Free choice of non-functional capability

• Flexible configuration

• Write a Java application once, run it anytime, anywhere,
in any environment, with any “-ability”

9
APM.1931.01

Object Transaction Service
• Based on OMG’s specification of Object Transaction Service

• Object-oriented: objects are responsible for concurrency control

• Transaction service: begin, end (2-phase-commitment) transaction

Transactional
Client

Transactional
Object

Transactional
Server

Resource

Recoverable
Server

Transaction Service transaction
context

begin /
end
transaction

transactional
operation

transactional
operation

not involved in
transaction completion
may force rollback

registers resource

may force rollback

involved in
transaction
completion

10
APM.1931.01

A Transaction Example
• Every object method: deals with concurrency, and registers itself

• Every object: provides prepare, commit, and rollback operations

Client Resource Resource Current Coordinator

begin
debit

get_control
register_resource

credit get_control
register_resource

commit
prepare
prepare

commit
commit

11
APM.1931.01

Recoverable Object
• An object method

- uses the Control parameter to retrieve the Coordinator object
- registers itself to the transaction service via the Coordinator
- checks whether it is registered for the same transaction
- ensures it is involved only in one transaction at a time

• The above is concerned with non-functional requirements
• Functional and non-functional code are mixed up

class Account
 public void credit(
 Coordinator co = ctl.get_coordinator();
 //make sure this object has not been registered for the same transaction
 //make sure this object is involved only in one transaction at a time
 RecoveryCoordinator r = co.register_resource(this);
 balance = balance + amt;

}

 }

extends Resource implements Transactional {
Control ctl,double amt) {

 public Vote prepare(...) {};
 public void commit(...) {......};
 public void rollback(...) {......};

12
APM.1931.01

Recoverable Object (Using MOP)
• Only functional requirements are implemented in application objects
• Non-functional requirements are implemented in metaobjects
• Multiple concurrency control methods can be provided
• Users can choose a method suitable for their particular application

either statically or dynamically

class Account extends Resource {
 public void credit(
 { balance = balance + amt; }

Control ctl, double amt)

class meta_2pl extends MetaObject {
 public void metaBefore(MID mid, CID cid, Arg args)
 {
 Control ctrl = (Control) args.extractArg(0).extractObject();
 Coordinator co = ctl.get_coordinator();
 //make sure this object has not been registered for the same transaction
 //make sure this object is involved in only one transaction at a time
 RecoveryCoordinator r = co ->register_resource(this);
}

}

}

13
APM.1931.01

Transactional Client

• Construct a transaction
- use the begin operation to start a transaction
- a Control object is passed as an explicit parameter of a request
- use the commit operation to end a transaction

• Concurrency control method can be changed dynamically

Current txn_crt = new Current();

txn_crt.begin();

 wu.debit(ctl, 1000);
 scarlet.credit(ctl, 1000);

Control ctl;

 ctl = txn_crt.get_control();

txn_crt.commit();

wu.changeMeta(“Meta_2pl”);
scalet.changeMeta(“Meta_2pl”);
txn_crt.begin();

 wu.debit(ctl, 1000);
 scarlet.credit(ctl, 1000);

 ctl = txn_crt.get_control();

txn_crt.commit();

14
APM.1931.01

Summary
• The benefits and feasibility have been shown clearly

- flexibility
- easy to implement: 2 X 3 person months

• Experience
- transparency: not totally transparent
- Java’s RMI: not flexible, not customisable
- Java’s RMI: pass by copy

• Related work
- JavaSoft’s Reflection API: observation meta data only
- Meta Java: no separation between functional and non-functional code
- University of Newcastle: for fault tolerance
- LAAS: for security and fault tolerance

15
APM.1931.01

Information
• APM.1911: Design and Implementation of Reflective Java

• APM.1923: Design and Implementation of Object Transaction Service

• APM.1940: Design and Implementation of a Persistence Service

• Source code release: 23 December 1996
- ftp.ansa.co.uk
- phase3/phase3-prototypes/Reflective-Java/reflective-java-01.tar.gz

• Contacts:
- Zhixue Wu: zw@ansa.co.uk 01223--568930
- Scarlet Schwiderski: ss@ansa.co.uk 01223--568926

