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Abstract

 This is a presentation document for Reflective Java.

The purpose of Reflective Java is to make some features of Java reflective, thus enabling Java-
powered system to be customised dynamically, flexibly and transparently to suit a particular
application. Method calls are made open-ended; a simple pre-processor that translates reflective
programs into standard Java programs and generates classes for binding a Java object to its
metaobject.

This presentation at first gives an overview of Reflective Java and then demonstrates its benefits
via an application, namely an object transaction service.
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Observations
Requirements:
• The one size fits all design strategy becomes obsolete

- mobile computing, internet programming, and multimedia applications
- different considerations and requirements

• System software must be made flexible and customisable at run-time
- many attributes of the application environment vary from time to time, and

from place to place

Technologies:
• Object-oriented programming and language theory has suggested

methods for building flexible system software components
- Java
- reflection and metaobject protocol (MOP)

• It’s time to transfer these ideas to mature technology
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Java
• A simple, object oriented , distributed, interpreted, robust, safe,

architecture neutral , portable , high performance, multithreaded,
dynamic language

• Advantages
- object-oriented: separate interface from implementation
- architecture neutral: write once, run anywhere
- dynamic loading and linking

• Problems
- application cannot be decoupled from the choice of non-functional

capabilities
- application is not portable to every infrastructure
- application cannot adjust its behaviour according to conditions
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Reflective Java
• Enable a Java-powered system to be customised according to the

particular application requirements and the run-time environment
- statically at compile time
- dynamically at run-time
- flexibly
- transparently

• Make Java reflective
- without any change to the language itself
- without any change to its compiler
- without any change to its virtual machine
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Reflective Method Invocation
• Method invocations are interceptable and changeable by users

- metaBefore operation
- metaAfter operation

• Meta data for classes, objects, and parameters is accessible at meta
level

• Values of parameters can be manipulated at meta level

void credit(double amount)
{balance = balance + amount;}

set_lock; release_lock;

free_back_up;meta level

application
level

back_up;
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Idea
• Clear separation of functional and non-functional requirements
• Functional requirements are satisfied by application objects
• Non-functional requirements are satisfied by metaobjects
• Non-functional capabilities are added to an application object by

binding it to an appropriate metaobject
• Actual behaviour of an application object can be changed by binding

it to a different metaobject
• Binding can be changed dynamically

persistent transaction replication

application
object

metaobjectmetaobject metaobject

binding
switch
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Implementation
• Application classes are implemented by application developers
• Metaobject classes are implemented by system developers
• End-users describe which non-functional capability should be added

to an application through a simple declarative language
• A preprocessor generates a reflection class
• The end-user application performs functions through the reflection

class

application class metaobject class

reflection class

user class by end-user

preprocessor

binding spec.
data flow

by application programmer by system developer

inherit
has an instance
use
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Benefits
• Easy to upgrade product in order to adapt to changes: either in

hardware or in application requirements

• Flexibility to customise policies dynamically to suit run-time
environment

• High-level transparency to applications

• Free choice of non-functional capability

• Flexible configuration

• Write   a   Java   application   once,    run   it   anytime,   anywhere,
in any environment, with any “-ability”
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Object Transaction Service
• Based on OMG’s specification of Object Transaction Service

• Object-oriented: objects are responsible for concurrency control

• Transaction service: begin, end (2-phase-commitment) transaction

Transactional
Client

Transactional
Object

Transactional
Server

Resource

Recoverable
Server

Transaction Service transaction
context

begin /
end
transaction

transactional
operation

transactional
operation

not involved in
transaction completion
may force rollback

registers resource

may force rollback

involved in
transaction
completion
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A Transaction Example
• Every object method: deals with concurrency, and registers itself

• Every object: provides prepare, commit, and rollback operations

Client Resource Resource Current Coordinator

begin
debit

get_control
register_resource

credit get_control
register_resource

commit
prepare
prepare

commit
commit
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Recoverable Object
• An object method

- uses the Control parameter to retrieve the Coordinator object
- registers itself to the transaction service via the Coordinator
- checks whether it is registered for the same transaction
- ensures it is involved only in one transaction at a time

• The above is concerned with non-functional requirements
• Functional and non-functional code are mixed up

class Account
 public void credit(
   Coordinator co = ctl.get_coordinator( );
   //make sure this object has not been registered for the same transaction
   //make sure this object is involved only in one transaction at a time
    RecoveryCoordinator r = co.register_resource(this);
    balance = balance + amt;

}

  }

extends Resource implements Transactional {
Control ctl,double amt) {

  public Vote prepare(...) { ......};
  public void commit(...) {......};
  public void rollback(...) {......};
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Recoverable Object (Using MOP)
• Only functional requirements are implemented in application objects
• Non-functional requirements are implemented in metaobjects
• Multiple concurrency control methods can be provided
• Users can choose a method suitable for their particular application

either statically or dynamically

class Account extends Resource {
 public void credit(
 {   balance = balance + amt; }

Control ctl, double amt)

class meta_2pl extends MetaObject {
 public void metaBefore(MID mid, CID cid, Arg args)
  {
    Control ctrl = (Control) args.extractArg(0).extractObject( );
   Coordinator co = ctl.get_coordinator( );
   //make sure this object has not been registered for the same transaction
   //make sure this object is involved in only one transaction at a time
    RecoveryCoordinator r = co ->register_resource(this);
}

}

}



13
APM.1931.01

Transactional Client

• Construct a transaction
- use the begin operation to start a transaction
- a Control object is passed as an explicit parameter of a request
- use the commit operation to end a transaction

• Concurrency control method can be changed dynamically

Current txn_crt = new Current( );

txn_crt.begin( );

    wu.debit(ctl, 1000);
    scarlet.credit(ctl, 1000);

Control ctl;

    ctl = txn_crt.get_control( );

txn_crt.commit( );

wu.changeMeta(“Meta_2pl”);
scalet.changeMeta(“Meta_2pl”);
txn_crt.begin( );

    wu.debit(ctl, 1000);
    scarlet.credit(ctl, 1000);

    ctl = txn_crt.get_control( );

txn_crt.commit( );



14
APM.1931.01

Summary
• The benefits and feasibility have been shown clearly

- flexibility
- easy to implement: 2 X 3 person months

• Experience
- transparency: not totally transparent
- Java’s RMI: not flexible, not customisable
- Java’s RMI: pass by copy

• Related work
- JavaSoft’s Reflection API: observation meta data only
- Meta Java: no separation between functional and non-functional code
- University of Newcastle: for fault tolerance
- LAAS: for security and fault tolerance
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Information
• APM.1911: Design and Implementation of Reflective Java

• APM.1923: Design and Implementation of Object Transaction Service

• APM.1940: Design and Implementation of a Persistence Service

• Source code release:   23 December 1996
- ftp.ansa.co.uk
- phase3/phase3-prototypes/Reflective-Java/reflective-java-01.tar.gz

• Contacts:
- Zhixue Wu: zw@ansa.co.uk 01223--568930
- Scarlet Schwiderski: ss@ansa.co.uk 01223--568926


