Poseidon House TELEPHONE: Cambridge (01223) 515010

Castle Park INTERNATIONAL: +44 1223 515010

Cambridge CB3 ORD FAX: +44 1223 359779

United Kingdom E-MAIL: apm@ansa.co.uk
ANSA Phase llI

Reflective Java

Zhixue Wu and Scarlet Schwiderski

Abstract

This is a presentation document for Reflective Java.

The purpose of Reflective Java is to make some features of Java reflective, thus enabling Java-
powered system to be customised dynamically, flexibly and transparently to suit a particular
application. Method calls are made open-ended; a simple pre-processor that translates reflective
programs into standard Java programs and generates classes for binding a Java object to its
metaobject.

This presentation at first gives an overview of Reflective Java and then demonstrates its benefits
via an application, namely an object transaction service.

APM.1931.01 Approved 24th January 1997
Technical Report

Distribution:
Supersedes :
Superseded by :

Copyright [0 1997 Architecture Projects Management Limited
The copyright is held on behalf of the sponsors for the time being of the ANSA Workprogramme.

Reflective Java

Zhixue Wu
Scarlet Schwiderski
28 Jan. 1997

11111111111

Observations
Requirements:

 The one size fits all design strategy becomes obsolete
- mobile computing, internet programming, and multimedia applications
- different considerations and requirements

o System software must be made flexible and customisable at run-time

- many attributes of the application environment vary from time to time, and
from place to place

Technologies:

» Object-oriented programming and language theory has suggested
methods for building flexible system software components

- Java
- reflection and metaobject protocol (MOP)

e [t's time to transfer these ideas to mature technology

APM.1931.01

Java

A simple, object oriented , distributed, interpreted, robust, safe,
architecture neutral , portable , high performance, multithreaded,
dynamic language

Advantages

- object-oriented: separate interface from implementation

- architecture neutral: write once, run anywhere

- dynamic loading and linking

Problems

- application cannot be decoupled from the choice of non-functional
capabilities

- application is not portable to every infrastructure

- application cannot adjust its behaviour according to conditions

APM.1931.01

Reflective Java

Enable a Java-powered system to be customised according to the
particular application requirements and the run-time environment

- statically at compile time
- dynamically at run-time
- flexibly

- transparently

Make Java reflective

- without any change to the language itself
- without any change to its compiler

- without any change to its virtual machine

APM.1931.01

Reflective Method Invocation

Method invocations are interceptable and changeable by users
- metaBefore operation
- metaAfter operation

Meta data for classes, objects, and parameters is accessible at meta
level

Values of parameters can be manipulated at meta level

set_lock; release_lock;

meta level back_up; free_back up;

Y
?ppl;catlon // void credit(double amount)
eve - 4 {balance = balance + amount;}

APM.1931.01

ldea
Clear separation of functional and non-functional requirements

Functional requirements are satisfied by application objects
Non-functional requirements are satisfied by metaobjects
Non-functional capabilities are added to an application object by
binding it to an appropriate metaobject

Actual behaviour of an application object can be changed by binding

It to a different metaobject
replication
metaobject
binding

Binding can be changed dynamically
switch

persistent transaction
metaobject metaobject
application
object

APM.1931.01

Implementation

Application classes are implemented by application developers
Metaobject classes are implemented by system developers

End-users describe which non-functional capability should be added
to an application through a simple declarative language

A preprocessor generates a reflection class
The end-user application performs functions through the reflection

class

by application programmer

by system developer

application class metaobject class

T~

reflection class

——» inherit

has an instance

use
— data flow

-
- (_Preprocessor)

!

by end-user

APM.1931.01

Benefits

Easy to upgrade product in order to adapt to changes: either in
hardware or in application requirements

Flexibility to customise policies dynamically to suit run-time
environment

High-level transparency to applications
Free choice of non-functional capability
Flexible configuration

Write a Java application once, run it anytime, anywhere,
In any environment, with any “-ability”

APM.1931.01

Object Transaction Service

 Based on OMG'’s specification of Object Transaction Service

* Object-oriented: objects are responsible for concurrency control

e Transaction service: begin, end (2-phase-commitment) transaction

Transactional
Client

Transactional Recoverable
Server Server

Transactional
. Object ™ Resource
transactional ransactional
operation operation { A
beain / not involved in _ registers resource involved in
eng transactian completion ¢ Iback trclnsallc%!on
may force rallbac campletion
transaction may force rollback y P
Y
Transaction Service transaction
context

APM.1931.01

A Transaction Example

Every object method: deals with concurrency, and registers itself

Every object: provides prepare, commit, and rollback operations

Client Resource Resource Current Coordinator
_ D >
___begin | |
debit
> get_control
register_resource
credit > get_control
register_resource
commit
prepare
prepare
commit
commit

10

APM.1931.01

Recoverable Object

An object method

uses the Control parameter to retrieve the Coordinator object
registers itself to the transaction service via the Coordinator
checks whether it is registered for the same transaction
ensures it is involved only in one transaction at a time

The above is concerned with non-functional requirements
Functional and non-functional code are mixed up

class Account extends Resource implements Transactional {

public void credit(Control ctl,double amt) {
Coordinator co = ctl.get_coordinator();
//make sure this object has not been registered for the same transaction
//make sure this object is involved only in one transaction at a time
RecoveryCoordinator r = co.register_resource(this);

balance = balance + amt;

}
public Vote prepare(...) { }
public void commit(...) {......};

11

APM.1931.01

Recoverable Object (Using MOP)

* Only functional requirements are implemented in application objects
* Non-functional requirements are implemented in metaobjects
» Multiple concurrency control methods can be provided

» Users can choose a method suitable for their particular application
either statically or dynamically

class meta_2pl extends MetaObject {
public void metaBefore(MID mid, CID cid, Arg args)

Control ctrl = (Control) args.extractArg(0).extractObject();
Coordinator co = ctl.get_coordinator(?;

/Imake sure this object has not been registered for the same transaction
/Imake sure this object is involved in only one transaction at a time
RecoveryCoordinator r = co ->register_resource(this);

class Account extends Resource {
public void credit(Control ctl, double amt)

{ balance = balance + amt; }

}

- 12

APM.1931.01

Transactional Client

e Construct a transaction

use the begin operation to start a transaction
a Control object is passed as an explicit parameter of a request
use the commit operation to end a transaction

e Concurrency control method can be changed dynamically

Current txn_crt = new Current();
Control ctl;

txn_crt.begin();
ctl = txn_crt.get_control();
wu.debit(ctl, 1000);
scarlet.credit(ctl, 1000);
txn_crt.commit();

wu.changeMeta(“Meta_2pl”);
scalet.changeMeta(“Meta_2pl”);

txn_crt.begin();
ctl = txn_crt.get_control();
wu.debit(ctl, 1000);
scarlet.credit(ctl, 1000);
txn_crt.commit();

13

APM.1931.01

The benefits and feasibility have been shown clearly

Summary

flexibility
easy to implement: 2 X 3 person months

Experience

transparency: not totally transparent
Java’s RMI: not flexible, not customisable
Java’s RMI: pass by copy

Related work

JavaSoft's Reflection API. observation meta data only

Meta Java: no separation between functional and non-functional code

University of Newcastle: for fault tolerance
LAAS: for security and fault tolerance

14

APM.1931.01

- 15

Information

APM.1911: Design and Implementation of Reflective Java
APM.1923: Design and Implementation of Object Transaction Service
APM.1940: Design and Implementation of a Persistence Service

Source code release: 23 December 1996
- ftp.ansa.co.uk
- phase3/phase3-prototypes/Reflective-Java/reflective-java-01.tar.gz

Contacts:
- Zhixue Wu: zw@ansa.co.uk 01223--568930
- Scarlet Schwiderski: ss@ansa.co.uk 01223--568926

APM.1931.01

