Java 3D 1.1 Beta 2

 Technical Summary

Java 3D API Overview
3
A Platform Independent 3D API
3
The Java 3D API Design Goals
3
High Performance
3
Layered Implementation
4
Target Hardware Platforms
4
The Scene Graph Programming Model
4
Current Status of Java 3D
5
Significant Bugs in Java 3D 1.1 Beta 2 Release
5
Solaris-specific bugs
5
Stability
6
Bug Pyramid
6
Portability, Platforms and Installation
6
Performance
7
Other Java Graphics Libraries
7
Magician
7

Java 3D API Overview

(Portions from java.sun.com)

Historically, 3D graphics programmers have needed to squeeze every last ounce of performance from their graphics hardware in order to obtain a high degree of visual realism. Developers have often had to leverage knowledge of underlying hardware details in order to obtain maximum performance from a given graphics accelerator.

Even low-level cross-platform APIs, like OpenGL, have required a high degree of programming expertise in order to extract optimized performance from different hardware platforms. These realities have resulted in a difficult and expensive development process, which has mandated platform-specific development efforts-leaving few resources to focus on application functionality.

A Platform Independent 3D API

The Java 3D API represents an evolution to a standard, high-level 3D API that yields a high degree of interactivity while preserving true platform independence.

The Java 3D API Design Goals

The Java 3D API was designed to satisfy the following goals:

· High Performance Many design decisions were made so that Java 3D API implementations could deliver the highest level of performance to application users. In particular, when trade-offs were made, only alternatives that benefited runtime execution were selected.

· Rich set of 3D features The Java 3D API was designed to provide a rich set of features for creating interesting 3D worlds, tempered by the need to avoid non-essential or obscure features. Features that could be written in Java and layered on top of the Java 3D API were not included.

· High-level, Object-oriented paradigm The Java 3D API was designed to offer a high-level, object-oriented, programming model that enables developers to rapidly deploy sophisticated Java applications and applets.

· Wide Variety of File Formats Support for run-time loaders was included to allow the Java 3D API to accommodate a wide variety of file formats such as vendor-specific CAD formats, interchange formats, VRML 1.0, and VRML 2.0.

High Performance

The Java 3D API's scene graph programming model (described later in this document) allows Java 3D to perform mundane tasks, such as traversal of the scene graph or management of state attribute changes, thereby simplifying the job for the application. Java 3D does this without sacrificing performance.

At first glance, it might appear that this high-level approach would create more work for the API. However, it actually has the opposite effect. The Java 3D API's higher level of abstraction not only changes the amount, but more importantly, the kind of work that the API must perform. The Java 3D API is freed from the constraints found in interfaces with a lower level of abstraction and allows introduction of optimizations not possible with these lower-level APIs.

Additionally, leaving the details of rendering to Java 3D allows it to tune the rendering to the underlying hardware. For example, relaxing the strict rendering order imposed by other APIs allows parallel traversal of the scene graph as well as parallel rendering. Knowing which parts of the scene graph cannot be modified at runtime allows Java 3D to flatten the tree, pre-transform geometry, or represent the geometry in a native hardware format without the need to keep the original data.

Layered Implementation

Besides optimizations at the API level, one of the more important factors that determines the performance of the Java 3D API is the time it takes to render the visible geometry.

To optimize rendering, Java 3D implementations are layered to take advantage of the native, low-level API that is available on a given system. In particular, Java 3D implementations that utilize OpenGL, Direct3D, and QuickDraw3D will be available.

This means that Java 3D rendering will be accelerated across the same wide range of systems that are supported by these lower-level APIs.

Target Hardware Platforms

The Java 3D API is aimed at a wide range of 3D-capable hardware and software platforms, from low cost PC game cards and software renderers at the low end to mid-range workstations, and up to very high-performance, specialized, 3D image generators.

It is expected that Java 3D implementations will provide useful rendering rates on most modern PCs, especially those with 3D graphics accelerator cards. On mid-range workstations, the Java 3D API is expected to provide applications with nearly full-speed hardware performance.

Finally, the Java 3D API was designed to scale as the underlying hardware platforms increase in speed over time. Tomorrow's 3D PC game accelerators will support more complex virtual worlds than the high-priced workstations of a few years ago. The Java 3D API is prepared to meet this increase in hardware performance.

The Scene Graph Programming Model

The Java 3D API's scene graph-based programming model provides a simple and flexible mechanism for representing and rendering potentially complex 3D environments. The scene graph contains a complete description of the entire scene, or virtual universe. This includes the geometric data, the attribute information, and the viewing information needed to render the scene from a particular point of view.

The Java 3D API improves on previous graphics APIs by eliminating many of the bookkeeping and programming chores that those APIs impose. The Java 3D API allows the programmer to focus on the geometric objects or the scene and its composition, as opposed to triangles or about how to write the rendering code for efficiently displaying the scene.

Current Status of Java 3D

Java 3D is the result of a collaboration between Intel, Silicon Graphics, Apple and Sun. Implemented on top existing immediate-mode 3D rendering APIs: OpenGL, DirectX and QuickDraw 3D. Performance is expected to be quite good as Java 3D will use existing hardware accelerated APIs.

 “An application developer using immediate mode exclusively, whose main concern is performance and not inter-platform operability, should use the appropriate lower-level API rather than Java 3D.”

Design Choices for the initial release of Java 3D:

1. The only geometric primitive supported is the triangle.

2. 3D sound support is included.

3. A true-color video display depth is required.

4. Java 3D does not include any support for off-screen rendering or printing.

Significant Bugs in Java 3D 1.1 Beta 2 Release

1. Java 3D does not run in browsers. Only applications and Appletviewer are supported. However, Java 3D applets may run in a browser using the latest Java Plugin.

2. Multiple Java 3D views are not supported.

3. Transparencies fail to render in Mixed Mode.

4. Appletviewer’s clone function fails with Java 3D.

5. Java 3D cannot be used with the Swing API.

6. Problems initializing audio and 3D sound spatialization.

7. Occasional crashes at shutdown.

8. Java 3D classes and threads are not cleaned-up and cannot be unloaded.

9. Occasional problems using 2D texture images.

10. NormalGenerator produces strange “creases” in objects.

11. Many DirectX related bugs, this code is still in “alpha”.

Solaris-specific bugs

1. LineStripArray may crash on Creator-3D card.

Stability

Java 3D is currently Beta software, as is the version of the JDK required to run Java 3D applications. Java 3D will only run (without modification) on a 1.2 Beta JDK; the latest JDK is version 1.2 Beta 4.

Although the latest version of Java 3D is called 1.1 Beta 2 there has not been a 1.0 final release of Java 3D. The current expectation for the ship date of the final release of Java 3D is around Easter, also the expected ship date for the final release of the 1.2 JDK. Running a Beta Java 3D API on a beta version on the JDK naturally introduces stability concerns. JDK 1.2 Beta 4 appears to be fairly stable; most of the complaints voiced are related to performance issues. The garbage collection and allocation of objects has, as yet, not been optimized in JDK 1.2 Beta 4, leading to sluggish performance compared to JDK 1.1.6.

Bug Pyramid
In the Bug Pyramid, because each subsequent layer is reliant on the lower layers, stability, bug count, and performance are increasingly out of the hands of the application developers.

Portability, Platforms and Installation

Because Java 3D only runs on the latest Beta JDK the only platforms currently supported are:

Operating System
Hardware Acceleration

Windows 95/98
OpenGL and DirectX (alpha)

Windows NT
OpenGL

Solaris
OpenGL

Similarly, because no IDEs currently support the latest release of the JDK, only Sun command line tools are available for development.

Java 3D has been tested on:

· Windows 95, software acceleration

· Windows NT, software acceleration

Performance

Java 3D has not been tested with hardware acceleration but preliminary testing under Windows 95 and NT has shown performance levels broadly equal to OpenGL. The major causes for concern are:

Large memory footprint. Java 3D requires a minimum of 64MB of system memory to run satisfactorily.

Inter-application performance degradation. Java 3D running Windows 95/98 does not yield sufficient processor time as the drawing threads are created with a very high priority, resulting in an overall degradation of system performance.

Other Java Graphics Libraries

Magician

Subject: Re: ANNOUNCE: Magician 1.0 Released!

> I am fairly new to graphics and don't really understand the key

> differences between Java3D and Magician. All I know is that they both use

> OpenGL. Is there any sort of document or explanation somewhere that answers

> this question? Specifically what can I do with Magician that I cannot do

> with Java3D and what can I do with Java3D that I cannot do with Magician?

> Can they work together?

Well, the basic difference is that Java3D is a brand new API designed by

Sun that happens to use OpenGL as the underlying rendering engine. This is

similar to, say, Cosmo3D which is a scene graph API layered on top of

OpenGL or Inventor. Whereas Magician *is* OpenGL. However, Java3D is apparently

also being layered on top of Direct3D, Quicktime3D and so on.......

So, theoretically, Sun could throw out the OpenGL code they're basing

Java3D on and use Magician (wishful thinking!).

Additionally, Java3D is a high-level abstracted interface whereas OpenGL is

more low-level. That is, Java3D deals with stuff like scene graphs, whereas

OpenGL deals with raw matrix mathematics, points, polygons and the like.

So, Java3D is probably useful for stuff like animations using the key-framing

code in there, and other special effects whereas Magician is better for

the more ``bare-metal'' stuff. Also, using Magician gives you far more

control over how things are done than Java3D since Java3D doesn't give you

access to the underlying OpenGL implementation that it sits on.

Magician and Java3D *could* conceivably work together, but that might take

a bit of experimentation. Part of the problem is that Java3D runs on very

few platforms and virtual machine configurations whereas Magician is far

more portable and consumes way less resources. Java3D also *requires* JDK1.2

and Java2D concepts, whereas Magician does not. We'll happily run on

JDK-1.1 and JDK-1.2 and in-betweeny hybrids such as the Microsoft and

Netscape Java implementations.

Oh, and we support Linux. 8-)

From: descarte@arcana.co.uk To: Matt Robinson

Subject: Re: ANNOUNCE: Magician 1.0 Released!

> works with Linux is a _big_ plus. Anyway, can you comment on the differences

> between graphics programming using OpenGL in C/C++ vs. Java? If I am going to

> use Java over C or C++ I better be able to tell him that I can do the same

> stuff...

Well, this is a tough one to answer objectively. You'll have to excuse

my personal bias because I've just spent a year writing Magician, but here

goes.......

 Java / OpenGL / Magician:

 Pros:

 o Portable across multiple platforms and Java virtual machines

 immediately

 o No platform-specific or window-system-specific stuff to worry

 about (who needs to care about X Visuals anyway?)

 o Built-in profiling and tracing support for all OpenGL calls,

 that is, you can on-the-fly (runtime) switch OpenGL

 ``pipelines'' which time each OpenGL command or batches of

 commands and so on. Therefore, if you have a section of code

 that is sluggish or buggy, you can temporarily switch on

 tracing / profiling for that section only. This is a runtime

 feature, not compile-time.

 o Heavily featured. Network (URL) based texture-mapping, built-in

 support for textures from any image format supported by the

 Java virtual machine (GIF, JPEG, XPM, XBM, BMP...).

 o Some geometry loaders for RAW triangle formats, WaveFront .obj

 and VRML2.0 on the way...

 o Multiple simultaneous windowed rendering (something Java3D

 can't hack very well just now).

 o Built-in animation and thread handlers for easy integration into

 multi-threaded programs.

 o Seamless integration into AWT and Swing.

 o Covers 100% of OpenGL. *Everything* is implemented.

 o Easy to use tesselators for complex geometry.

 o Built-in simple geometry producers.

 o Writes our PostScript and PPM images from renderered frames.

 For example, if you had an animated demo and wanted to produce

 a ``flick-book'' animation or MPEG, this is as simple as adding

 one line of code to your programs.

 o Extremely fast to develop and debug with

 o Extremely small applications (for example, a complex 3-window

 game I'm working on compiles into about 25Kbytes).

 o and so on.........

 Cons:

 o Not available on every platform on the planet...(MacOS, BeOS

 and OS/2 are on the way...)

 o Slightly more sluggish than C/C++ in raw performance although

 the gap is certainly closing. Magician can run at about 80-90%

 of the speed of C.

 C/C++/OpenGL:

 Pros:

 o Fast (in general)

 o Portable if you use GLUT

 o Large body of published software. Admittedly a large proportion

 of this is nigh-on useless

 Cons:

 o GLUT ain't that good for large applications

 o You might need to mess about with platform and/or window-system

 specific code to do something funky if you're not using GLUT

 o Not that portable

 o No multi-threading built-in

 o Core dumps, pointers.......

 o No easy way to do stuff like runtime tracing or profiling.

 o Large compiled applications

 o No built-in image -> texture generation

That's just a general summary.

Hardware

Operating System

System Drivers

Java Virtual Machine

Web Browser

Java Plugin

Java Applet

Java Application

Native Application

Copyright Tornado Labs 1998. All Rights Reserved.

Modified: 03/16/99
- 6 -

