Given the geometric primitive below (best viewed with monowidth font):
 
          +  (x0,y0,z0)
          |\
          | \
          |  \
(x3,y3,z1)+   + (x1,y1,z1)
          |  /
          | /
          |/
          + (x2,y2,z2)
 
 Let z0 > z1 > z2.
 
  With Gouraud shading, what is the color at point (x3,y3,z1), as a function of the colors at (x0,y0,z0) and (x2,y2,z2)?
 Is the calculation specific to color representation (e.g., RGB or HSV)?
 
 Why I'm asking:
   I'm developing a surface graph that displays a value as both height and a color, both using a linear mapping. The color mapping linearly maps to some subset of HSVA. (A maximum of 179 degrees of hue are used.) For example, the value might be mapped to both height and hue. But the color at (x3,y3,z1) is usually lighter than that at (x1,y1,z1).
         
================================================================================
Andrew R. Thomas-Cramer
Home: [EMAIL PROTECTED]    http://www.execpc.com/~artc/
Work: [EMAIL PROTECTED]                                608.287.1043
 
"Pa-pa" -- Zachary Thomas-Cramer, age 11-1/2 months.
================================================================================

Reply via email to