[
https://issues.apache.org/jira/browse/ARROW-10517?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17243963#comment-17243963
]
Lance Dacey commented on ARROW-10517:
-------------------------------------
Yes, I think the uuid specifier would work fine for my purposes. Generally, I
have had pyarrow create the resulting filenames with the partition_filename_cb
function, but you are right - I could probably generate the filenames directly
since I am dictating which filters to use in the first place (and each filter
becomes a file).
{code:python}
d1 = {
"id": [1, 2, 3, 4, 5],
"created_at": [
datetime.date(2020, 5, 7),
datetime.date(2020, 6, 19),
datetime.date(2020, 9, 14),
datetime.date(2020, 11, 22),
datetime.date(2020, 12, 2),
],
"updated_at": [
datetime.date(2020, 12, 2),
datetime.date(2020, 12, 2),
datetime.date(2020, 12, 2),
datetime.date(2020, 12, 2),
datetime.date(2020, 12, 2),
],
}
df = pd.DataFrame(data=d1)
table = pa.Table.from_pandas(df)
#historical dataset which has all history of each ID each time it gets updated
#each created_at partition would have a sub-partition for updated_at since
historical data can change - this can generate many small files depending on
how often my schedule runs to download data
#I use pa.string() as the partition data type here because I have had issues
using pa.date32(), sometimes I will get an error that we cannot convert a
string to date32() but using a date works perfectly fine
ds.write_dataset(
data=table,
base_dir=output_path,
format="parquet",
partitioning=ds.partitioning(pa.schema([("created_at", pa.string()),
("updated_at", pa.string())]), flavor="hive"),
schema=table.schema,
filesystem=fs,
)
#the next task would read the dataset and filter for the created_at partition
(ignoring the updated_at partition)
dataset = ds.dataset(
source=output_path,
format="parquet",
partitioning="hive",
filesystem=fs,
)
#I save the unique filters (each created_at value) externally and build the
dataset filter expression
filter_expression = pq._filters_to_expression(filters=[[('created_at', '==',
'2020-05-07')],
[('created_at', '==', '2020-06-19')], [('created_at', '==', '2020-09-14')],
[('created_at', '==', '2020-11-22')], [('created_at', '==', '2020-12-02')]])
table = dataset.to_table(filter=filter_expression)
#Turn the table into a pandas dataframe to remove duplicates and retain the
latest row for each ID
df = table.to_pandas(self_destruct=True).sort_values(["id", "updated_at"],
ascending=True).drop_duplicates(["id"], keep="last")
table = pa.Table.from_pandas(df)
#this writes the final dataset.
#There would be one file per created_at partition.
"container/created_at=2020-05-07/2020-05-07.parquet"
#our visualization tool connects directly to these parquet files so we can
report on the latest status of each ticket (not much attention is paid to the
historical changes)
pq.write_to_dataset(
table=table,
root_path=output_path,
partition_cols=["created_at"],
partition_filename_cb=lambda x: str(x[-1]) + '.parquet',,
filesystem=fs,
)
{code}
***Note regarding the filters I use. I am using code similar to something I
found in the pyarrow.write_to_dataset function (pasted below) to generate these
filters. I could probably generate filenames instead though and use write_table
like you mentioned.
{code:python}
for keys, subgroup in data_df.groupby(partition_keys):
if not isinstance(keys, tuple):
keys = (keys,)
subdir = '/'.join(
['{colname}={value}'.format(colname=name, value=val)
for name, val in zip(partition_cols, keys)])
{code}
> [Python] Unable to read/write Parquet datasets with fsspec on Azure Blob
> ------------------------------------------------------------------------
>
> Key: ARROW-10517
> URL: https://issues.apache.org/jira/browse/ARROW-10517
> Project: Apache Arrow
> Issue Type: Bug
> Components: Python
> Affects Versions: 2.0.0
> Environment: Ubuntu 18.04
> Reporter: Lance Dacey
> Priority: Major
> Labels: azureblob, dataset, dataset-parquet-read,
> dataset-parquet-write, fsspec
> Fix For: 2.0.0
>
> Attachments: ss.PNG, ss2.PNG
>
>
>
> {code:python}
> # adal==1.2.5
> # adlfs==0.2.5
> # fsspec==0.7.4
> # pandas==1.1.3
> # pyarrow==2.0.0
> # azure-storage-blob==2.1.0
> # azure-storage-common==2.1.0
> import pyarrow.dataset as ds
> import fsspec
> from pyarrow.dataset import DirectoryPartitioning
> fs = fsspec.filesystem(protocol='abfs',
> account_name=base.login,
> account_key=base.password)
> ds.write_dataset(data=table,
> base_dir="dev/test7",
> basename_template=None,
> format="parquet",
> partitioning=DirectoryPartitioning(pa.schema([("year",
> pa.string()), ("month", pa.string()), ("day", pa.string())])),
> schema=table.schema,
> filesystem=fs,
> )
> {code}
> I think this is due to early versions of adlfs having mkdir(). Although I
> use write_to_dataset and write_table all of the time, so I am not sure why
> this would be an issue.
> {code:python}
> ---------------------------------------------------------------------------
> RuntimeError Traceback (most recent call last)
> <ipython-input-40-bb38d83f896e> in <module>
> 13
> 14
> ---> 15 ds.write_dataset(data=table,
> 16 base_dir="dev/test7",
> 17 basename_template=None,
> /opt/conda/lib/python3.8/site-packages/pyarrow/dataset.py in
> write_dataset(data, base_dir, basename_template, format, partitioning,
> schema, filesystem, file_options, use_threads)
> 771 filesystem, _ = _ensure_fs(filesystem)
> 772
> --> 773 _filesystemdataset_write(
> 774 data, base_dir, basename_template, schema,
> 775 filesystem, partitioning, file_options, use_threads,
> /opt/conda/lib/python3.8/site-packages/pyarrow/_dataset.pyx in
> pyarrow._dataset._filesystemdataset_write()
> /opt/conda/lib/python3.8/site-packages/pyarrow/_fs.pyx in
> pyarrow._fs._cb_create_dir()
> /opt/conda/lib/python3.8/site-packages/pyarrow/fs.py in create_dir(self,
> path, recursive)
> 226 def create_dir(self, path, recursive):
> 227 # mkdir also raises FileNotFoundError when base directory is
> not found
> --> 228 self.fs.mkdir(path, create_parents=recursive)
> 229
> 230 def delete_dir(self, path):
> /opt/conda/lib/python3.8/site-packages/adlfs/core.py in mkdir(self, path,
> delimiter, exists_ok, **kwargs)
> 561 else:
> 562 ## everything else
> --> 563 raise RuntimeError(f"Cannot create
> {container_name}{delimiter}{path}.")
> 564 else:
> 565 if container_name in self.ls("") and path:
> RuntimeError: Cannot create dev/test7/2020/01/28.
> {code}
>
> Next, if I try to read a dataset (keep in mind that this works with
> read_table and ParquetDataset):
> {code:python}
> ds.dataset(source="dev/staging/evaluations",
> format="parquet",
> partitioning="hive",
> exclude_invalid_files=False,
> filesystem=fs
> )
> {code}
>
> This doesn't seem to respect the filesystem connected to Azure Blob.
> {code:python}
> ---------------------------------------------------------------------------
> FileNotFoundError Traceback (most recent call last)
> <ipython-input-41-4de65fe95db7> in <module>
> ----> 1 ds.dataset(source="dev/staging/evaluations",
> 2 format="parquet",
> 3 partitioning="hive",
> 4 exclude_invalid_files=False,
> 5 filesystem=fs
> /opt/conda/lib/python3.8/site-packages/pyarrow/dataset.py in dataset(source,
> schema, format, filesystem, partitioning, partition_base_dir,
> exclude_invalid_files, ignore_prefixes)
> 669 # TODO(kszucs): support InMemoryDataset for a table input
> 670 if _is_path_like(source):
> --> 671 return _filesystem_dataset(source, **kwargs)
> 672 elif isinstance(source, (tuple, list)):
> 673 if all(_is_path_like(elem) for elem in source):
> /opt/conda/lib/python3.8/site-packages/pyarrow/dataset.py in
> _filesystem_dataset(source, schema, filesystem, partitioning, format,
> partition_base_dir, exclude_invalid_files, selector_ignore_prefixes)
> 426 fs, paths_or_selector = _ensure_multiple_sources(source,
> filesystem)
> 427 else:
> --> 428 fs, paths_or_selector = _ensure_single_source(source,
> filesystem)
> 429
> 430 options = FileSystemFactoryOptions(
> /opt/conda/lib/python3.8/site-packages/pyarrow/dataset.py in
> _ensure_single_source(path, filesystem)
> 402 paths_or_selector = [path]
> 403 else:
> --> 404 raise FileNotFoundError(path)
> 405
> 406 return filesystem, paths_or_selector
> FileNotFoundError: dev/staging/evaluations
> {code}
> This *does* work though when I list the blobs before passing them to
> ds.dataset:
> {code:python}
> blobs = wasb.list_blobs(container_name="dev", prefix="staging/evaluations")
> dataset = ds.dataset(source=["dev/" + blob.name for blob in blobs],
> format="parquet",
> partitioning="hive",
> exclude_invalid_files=False,
> filesystem=fs)
> {code}
> Next, if I downgrade to pyarrow 1.0.1, I am able to read datasets (but there
> is no write_datasets):
> {code:python}
> # adal==1.2.5
> # adlfs==0.2.5
> # azure-storage-blob==2.1.0
> # azure-storage-common==2.1.0
> # fsspec==0.7.4
> # pandas==1.1.3
> # pyarrow==1.0.1
> dataset = ds.dataset("dev/staging/evaluations", format="parquet",
> filesystem=fs)
> dataset.to_table().to_pandas()
> {code}
> edit:
> pyarrow 2.0.0
> fsspec 0.8.4
> adlfs v0.5.5
> pandas 1.1.4
> numpy 1.19.4
> azure.storage.blob 12.6.0
> {code:python}
> x = adlfs.AzureBlobFileSystem(account_name=name, account_key=key)
> type(x.find("dev/test", detail=True))
> list
> fs = fsspec.filesystem(protocol="abfs", account_name=name, account_key=key)
> type(fs.find("dev/test", detail=True))
> list
> {code}
--
This message was sent by Atlassian Jira
(v8.3.4#803005)