[ 
https://issues.apache.org/jira/browse/ARROW-11758?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Antoine Pitrou updated ARROW-11758:
-----------------------------------
    Description: 
>From below test, summation kernel is of lower precision than numpy.sum.
Numpy implements pairwise summation [1] with O(logn) round-off error, better 
than O(n\) error from naive summation.

*sum.py*
{code:python}
import numpy as np
import pyarrow.compute as pc

t = np.arange(321000, dtype='float64')
t2 = t - np.mean(t)
t2 *= t2

print('numpy sum:', np.sum(t2))
print('arrow sum:', pc.sum(t2))
{code}

*test result*
{noformat}
# Verified with wolfram alpha (arbitrary precision), Numpy's result is correct. 
$ ARROW_USER_SIMD_LEVEL=SSE4_2 python sum.py
numpy sum: 2756346749973250.0
arrow sum: 2756346749973248.0

$ ARROW_USER_SIMD_LEVEL=AVX2 python sum.py 
numpy sum: 2756346749973250.0
arrow sum: 2756346749973249.0
{noformat}

[1] https://en.wikipedia.org/wiki/Pairwise_summation

  was:
>From below test, summation kernel is of lower precision than numpy.sum.
Numpy implements pairwise summation [1] with O(logn) round-off error, better 
than O(n) error from naive summation.

*sum.py*
{code:python}
import numpy as np
import pyarrow.compute as pc

t = np.arange(321000, dtype='float64')
t2 = t - np.mean(t)
t2 *= t2

print('numpy sum:', np.sum(t2))
print('arrow sum:', pc.sum(t2))
{code}

*test result*
{noformat}
# Verified with wolfram alpha (arbitrary precision), Numpy's result is correct. 
$ ARROW_USER_SIMD_LEVEL=SSE4_2 python sum.py
numpy sum: 2756346749973250.0
arrow sum: 2756346749973248.0

$ ARROW_USER_SIMD_LEVEL=AVX2 python sum.py 
numpy sum: 2756346749973250.0
arrow sum: 2756346749973249.0
{noformat}

[1] https://en.wikipedia.org/wiki/Pairwise_summation


> [C++][Compute] Summation kernel round-off error
> -----------------------------------------------
>
>                 Key: ARROW-11758
>                 URL: https://issues.apache.org/jira/browse/ARROW-11758
>             Project: Apache Arrow
>          Issue Type: Bug
>          Components: C++
>            Reporter: Yibo Cai
>            Assignee: Yibo Cai
>            Priority: Major
>
> From below test, summation kernel is of lower precision than numpy.sum.
> Numpy implements pairwise summation [1] with O(logn) round-off error, better 
> than O(n\) error from naive summation.
> *sum.py*
> {code:python}
> import numpy as np
> import pyarrow.compute as pc
> t = np.arange(321000, dtype='float64')
> t2 = t - np.mean(t)
> t2 *= t2
> print('numpy sum:', np.sum(t2))
> print('arrow sum:', pc.sum(t2))
> {code}
> *test result*
> {noformat}
> # Verified with wolfram alpha (arbitrary precision), Numpy's result is 
> correct. 
> $ ARROW_USER_SIMD_LEVEL=SSE4_2 python sum.py
> numpy sum: 2756346749973250.0
> arrow sum: 2756346749973248.0
> $ ARROW_USER_SIMD_LEVEL=AVX2 python sum.py 
> numpy sum: 2756346749973250.0
> arrow sum: 2756346749973249.0
> {noformat}
> [1] https://en.wikipedia.org/wiki/Pairwise_summation



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

Reply via email to