[
https://issues.apache.org/jira/browse/ARROW-12150?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]
David Li reassigned ARROW-12150:
--------------------------------
Assignee: David Li (was: Joris Van den Bossche)
> [Python] Bad type inference of mixed-precision Decimals
> -------------------------------------------------------
>
> Key: ARROW-12150
> URL: https://issues.apache.org/jira/browse/ARROW-12150
> Project: Apache Arrow
> Issue Type: Bug
> Components: Python
> Affects Versions: 3.0.0
> Environment: - macOS Big Sur 11.2.1
> - python 3.8.2
> Reporter: abdel alfahham
> Assignee: David Li
> Priority: Major
> Labels: pull-request-available
> Fix For: 4.0.0
>
> Time Spent: 0.5h
> Remaining Estimate: 0h
>
> Exporting _pyarrow.table_ that contains mixed-precision _Decimals_ using
> _parquet.write_table_ creates a parquet that contains invalid data/values.
> In the example below the first value of _data_decimal_ is turned from
> Decimal('579.11999511718795474735088646411895751953125000000000') in the
> pyarrow table to
> Decimal('-378.68971792399258172661600550482428224218070136475136') in the
> parquet.
>
> {code:java}
> import pyarrow
> from decimal import Decimal
> values_floats = [579.119995117188, 6.40999984741211, 2.0] # floats
> decs_from_values = [Decimal(v) for v in values_floats] # Decimal
> decs_from_float = [Decimal.from_float(v) for v in values_floats]
> decs_str = [Decimal(str(v)) for v in values_floats] # Decimal
> data_dict = {"data_decimal": decs_from_values, # python Decimal
> "data_decimal_from_float": decs_from_float,
> "data_float":values_floats, # python floats
> "data_dec_str": decs_str}
> table = pyarrow.table(data=data_dict)
> print(table.to_pydict()) # before saving
> pyarrow.parquet.write_table(table, "./pyarrow_decimal.parquet") # saving
> print(pyarrow.parquet.read_table("./pyarrow_decimal.parquet").to_pydict()) #
> after saving
> {code}
>
--
This message was sent by Atlassian Jira
(v8.3.4#803005)