Richard Shadrach created ARROW-13369:
----------------------------------------
Summary: performance of read_table using filters on a partitioned
parquet file
Key: ARROW-13369
URL: https://issues.apache.org/jira/browse/ARROW-13369
Project: Apache Arrow
Issue Type: Improvement
Components: Python
Affects Versions: 4.0.0
Reporter: Richard Shadrach
Reading a single partition of a parquet file via filters is significantly
slower than reading the partition directly.
{code:java}
import pandas as pd
size = 100_000
df = pd.DataFrame({'a': [1, 2, 3] * size, 'b': [4, 5, 6] * size})
df.to_parquet('test.parquet', partition_cols=['a'])
%timeit pd.read_parquet('test.parquet/a=1')
%timeit pd.read_parquet('test.parquet', filters=[('a', '=', 1)])
{code}
gives the timings
{code:python}
1.37 ms ± 46.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
2.41 ms ± 90.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
{code}
Likewise, changing size to 1_000_000 in the above code gives
{code:python}
4.94 ms ± 585 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
9.5 ms ± 140 µs per loop (mean ± std. dev. of 7 runs, 100 loops each){code}
Part of the docs for
[read_table|https://arrow.apache.org/docs/python/generated/pyarrow.parquet.read_table.html]
states:
> Partition keys embedded in a nested directory structure will be exploited to
>avoid loading files at all if they contain no matching rows.
>From this, I expected the performance to be roughly the same.
--
This message was sent by Atlassian Jira
(v8.3.4#803005)