[ 
https://issues.apache.org/jira/browse/ARROW-17679?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

mimoune djouallah updated ARROW-17679:
--------------------------------------
    Description: 
I am using pyarrow and duckdb to query some parquet files in GCP, thanks for 
making  the experience so smooth, but I have an issue with the performance, see 
code used.
import pyarrow.dataset as ds
import duckdb
import json
lineitem = ds.dataset("gs://xxxxx/lineitem")
lineitem_partition = ds.dataset("gs://xxxx/yyy",format="parquet", 
partitioning="hive")
lineitem_180 = ds.dataset("gs://xxxxx/lineitem_180",format="parquet", 
partitioning="hive")
con = duckdb.connect()
con.register("lineitem", lineitem)
con.register("lineitem_partition", lineitem_partition)
con.register("lineitem_180", lineitem_180)
def Query(request):
    SQL = request.get_json().get('name')
    df = con.execute(SQL).df()
    return json.dumps(df.to_json(orient="records")), 200, \{'Content-Type': 
'application/json'}
 
the issue is I am getting slow some extremely slow throughput performance, 
around 30 MBper second, the same files using local ssd laptop is extremely fast.
I am not sure what's the issue, I tried using pyarrow compute Query and it is 
the same performance 

  was:
I am using pyarrow and duckdb to query some parquet files in GCP, thanks for 
making  the experience so smooth, but I have an issue with the performance, see 
code used.
import pyarrow.dataset as ds
import duckdb
import json
lineitem = ds.dataset("gs://duckddelta/lineitem")
lineitem_partition = ds.dataset("gs://duckddelta/delta2",format="parquet", 
partitioning="hive")
lineitem_180 = ds.dataset("gs://duckddelta/lineitem_180",format="parquet", 
partitioning="hive")
con = duckdb.connect()
con.register("lineitem", lineitem)
con.register("lineitem_partition", lineitem_partition)
con.register("lineitem_180", lineitem_180)
def Query(request):
    SQL = request.get_json().get('name')
    df = con.execute(SQL).df()
    return json.dumps(df.to_json(orient="records")), 200, \{'Content-Type': 
'application/json'}
 
the issue is I am getting slow some extremely slow throughput performance, 
around 30 MBper second, the same files using local ssd laptop is extremely fast.
I am not sure what's the issue, I tried using pyarrow compute Query and it is 
the same performance 


> slow performance when reading data from GCP
> -------------------------------------------
>
>                 Key: ARROW-17679
>                 URL: https://issues.apache.org/jira/browse/ARROW-17679
>             Project: Apache Arrow
>          Issue Type: Bug
>          Components: Parquet, Python
>    Affects Versions: 9.0.0
>            Reporter: mimoune djouallah
>            Priority: Major
>
> I am using pyarrow and duckdb to query some parquet files in GCP, thanks for 
> making  the experience so smooth, but I have an issue with the performance, 
> see code used.
> import pyarrow.dataset as ds
> import duckdb
> import json
> lineitem = ds.dataset("gs://xxxxx/lineitem")
> lineitem_partition = ds.dataset("gs://xxxx/yyy",format="parquet", 
> partitioning="hive")
> lineitem_180 = ds.dataset("gs://xxxxx/lineitem_180",format="parquet", 
> partitioning="hive")
> con = duckdb.connect()
> con.register("lineitem", lineitem)
> con.register("lineitem_partition", lineitem_partition)
> con.register("lineitem_180", lineitem_180)
> def Query(request):
>     SQL = request.get_json().get('name')
>     df = con.execute(SQL).df()
>     return json.dumps(df.to_json(orient="records")), 200, \{'Content-Type': 
> 'application/json'}
>  
> the issue is I am getting slow some extremely slow throughput performance, 
> around 30 MBper second, the same files using local ssd laptop is extremely 
> fast.
> I am not sure what's the issue, I tried using pyarrow compute Query and it is 
> the same performance 



--
This message was sent by Atlassian Jira
(v8.20.10#820010)

Reply via email to