[ 
https://issues.apache.org/jira/browse/ARROW-17699?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Nicola Crane updated ARROW-17699:
---------------------------------
    Description: 
The issue here comes from accidentally passing in the schema function instead 
of the created schema object, but the error message isn't helpful

{code:r}

library(dplyr)
desired_schema <- schema(mpg = float64(), disp = float64(), hp = int64(), drat 
= float64(), 
    wt = float64(), qsec = float64(), vs = int64(), am = int64(), 
    gear = int64(), carb = int64(), cyl = int64())

tf <- tempfile()
dir.create(tf)
write_dataset(group_by(mtcars, cyl), tf, format = "csv", hive_style = FALSE)
open_dataset(tf, format = "csv", schema = schema) %>% collect()
#> Error in `CsvFileFormat$create()`:
#> ! Values in `column_names` must match `schema` field names
#> ✖ `column_names` and `schema` field names match but are not in the same order
list.files(tf)
#> [1] "4" "6" "8"

{code}


  was:

{code:r}

library(dplyr)

# all good!
tf <- tempfile()
dir.create(tf)
write_dataset(mtcars, tf, format = "csv")
open_dataset(tf, format = "csv") %>% collect()
#> # A tibble: 32 × 11
#>      mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
#>    <dbl> <int> <dbl> <int> <dbl> <dbl> <dbl> <int> <int> <int> <int>
#>  1  21       6  160    110  3.9   2.62  16.5     0     1     4     4
#>  2  21       6  160    110  3.9   2.88  17.0     0     1     4     4
#>  3  22.8     4  108     93  3.85  2.32  18.6     1     1     4     1
#>  4  21.4     6  258    110  3.08  3.22  19.4     1     0     3     1
#>  5  18.7     8  360    175  3.15  3.44  17.0     0     0     3     2
#>  6  18.1     6  225    105  2.76  3.46  20.2     1     0     3     1
#>  7  14.3     8  360    245  3.21  3.57  15.8     0     0     3     4
#>  8  24.4     4  147.    62  3.69  3.19  20       1     0     4     2
#>  9  22.8     4  141.    95  3.92  3.15  22.9     1     0     4     2
#> 10  19.2     6  168.   123  3.92  3.44  18.3     1     0     4     4
#> # … with 22 more rows

# all good
tf <- tempfile()
dir.create(tf)
write_dataset(group_by(mtcars, cyl), tf, format = "csv")
open_dataset(tf, format = "csv") %>% collect()
#> # A tibble: 32 × 11
#>      mpg  disp    hp  drat    wt  qsec    vs    am  gear  carb   cyl
#>    <dbl> <dbl> <int> <dbl> <dbl> <dbl> <int> <int> <int> <int> <int>
#>  1  22.8 108      93  3.85  2.32  18.6     1     1     4     1     4
#>  2  24.4 147.     62  3.69  3.19  20       1     0     4     2     4
#>  3  22.8 141.     95  3.92  3.15  22.9     1     0     4     2     4
#>  4  32.4  78.7    66  4.08  2.2   19.5     1     1     4     1     4
#>  5  30.4  75.7    52  4.93  1.62  18.5     1     1     4     2     4
#>  6  33.9  71.1    65  4.22  1.84  19.9     1     1     4     1     4
#>  7  21.5 120.     97  3.7   2.46  20.0     1     0     3     1     4
#>  8  27.3  79      66  4.08  1.94  18.9     1     1     4     1     4
#>  9  26   120.     91  4.43  2.14  16.7     0     1     5     2     4
#> 10  30.4  95.1   113  3.77  1.51  16.9     1     1     5     2     4
#> # … with 22 more rows
list.files(tf)
#> [1] "cyl=4" "cyl=6" "cyl=8"

# hive-style=FALSE leads to no `cyl` column, which, sure, makes sense
tf <- tempfile()
dir.create(tf)
write_dataset(group_by(mtcars, cyl), tf, format = "csv", hive_style = FALSE)
open_dataset(tf, format = "csv") %>% collect()
#> # A tibble: 32 × 10
#>      mpg  disp    hp  drat    wt  qsec    vs    am  gear  carb
#>    <dbl> <dbl> <int> <dbl> <dbl> <dbl> <int> <int> <int> <int>
#>  1  22.8 108      93  3.85  2.32  18.6     1     1     4     1
#>  2  24.4 147.     62  3.69  3.19  20       1     0     4     2
#>  3  22.8 141.     95  3.92  3.15  22.9     1     0     4     2
#>  4  32.4  78.7    66  4.08  2.2   19.5     1     1     4     1
#>  5  30.4  75.7    52  4.93  1.62  18.5     1     1     4     2
#>  6  33.9  71.1    65  4.22  1.84  19.9     1     1     4     1
#>  7  21.5 120.     97  3.7   2.46  20.0     1     0     3     1
#>  8  27.3  79      66  4.08  1.94  18.9     1     1     4     1
#>  9  26   120.     91  4.43  2.14  16.7     0     1     5     2
#> 10  30.4  95.1   113  3.77  1.51  16.9     1     1     5     2
#> # … with 22 more rows
list.files(tf)
#> [1] "4" "6" "8"


# *but* if we try to add it in via a schema, it doesn't work

desired_schema <- schema(mpg = float64(), disp = float64(), hp = int64(), drat 
= float64(), 
    wt = float64(), qsec = float64(), vs = int64(), am = int64(), 
    gear = int64(), carb = int64(), cyl = int64())

tf <- tempfile()
dir.create(tf)
write_dataset(group_by(mtcars, cyl), tf, format = "csv", hive_style = FALSE)
open_dataset(tf, format = "csv", schema = schema) %>% collect()
#> Error in `CsvFileFormat$create()`:
#> ! Values in `column_names` must match `schema` field names
#> ✖ `column_names` and `schema` field names match but are not in the same order
list.files(tf)
#> [1] "4" "6" "8"

{code}



> [R] Add better error message for if a non-schema passed into open_dataset()
> ---------------------------------------------------------------------------
>
>                 Key: ARROW-17699
>                 URL: https://issues.apache.org/jira/browse/ARROW-17699
>             Project: Apache Arrow
>          Issue Type: Bug
>          Components: R
>            Reporter: Nicola Crane
>            Priority: Major
>
> The issue here comes from accidentally passing in the schema function instead 
> of the created schema object, but the error message isn't helpful
> {code:r}
> library(dplyr)
> desired_schema <- schema(mpg = float64(), disp = float64(), hp = int64(), 
> drat = float64(), 
>     wt = float64(), qsec = float64(), vs = int64(), am = int64(), 
>     gear = int64(), carb = int64(), cyl = int64())
> tf <- tempfile()
> dir.create(tf)
> write_dataset(group_by(mtcars, cyl), tf, format = "csv", hive_style = FALSE)
> open_dataset(tf, format = "csv", schema = schema) %>% collect()
> #> Error in `CsvFileFormat$create()`:
> #> ! Values in `column_names` must match `schema` field names
> #> ✖ `column_names` and `schema` field names match but are not in the same 
> order
> list.files(tf)
> #> [1] "4" "6" "8"
> {code}



--
This message was sent by Atlassian Jira
(v8.20.10#820010)

Reply via email to