[ 
https://issues.apache.org/jira/browse/KAFKA-6152?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
 ]

Edmon Begoli updated KAFKA-6152:
--------------------------------
    Description: 
Support a new ExpanderSketch algorithm (Larsen et al., 2016) based on 
cluster-preserving clustering and considered the best contemporary streaming 
algorithm (Quanta, 2017). 

It achieves optimal O(ε^p^_log_n) space, O(_log_n) update time, and fast 
O(ε^p^poly(_log_n)) query time, and _whp_ correctness

Larsen, K. G., Nelson, J., Nguyên, H. L., & Thorup, M. (2016, October). Heavy 
hitters via cluster-preserving clustering. In Foundations of Computer Science 
(FOCS), 2016 IEEE 57th Annual Symposium on (pp. 61-70). IEEE.
https://arxiv.org/abs/1604.01357

Hartnett, K., (2017, October). Best-Ever Algorithm Found for Huge Streams of 
Data. Quanta Magazine, October 2017, online at: 
https://www.quantamagazine.org/best-ever-algorithm-found-for-huge-streams-of-data-20171024/

  was:
Support a new ExpanderSketch algorithm (Larsen et al., 2016) based on 
cluster-preserving clustering and considered the best contemporary streaming 
algorithm (Quanta, 2017). 

It achieves optimal O(ε^{p}log_n) space, O(log_n) update time, and fast 
O(ε^{p}poly(log_n)) query time, and whp correctness

Larsen, K. G., Nelson, J., Nguyên, H. L., & Thorup, M. (2016, October). Heavy 
hitters via cluster-preserving clustering. In Foundations of Computer Science 
(FOCS), 2016 IEEE 57th Annual Symposium on (pp. 61-70). IEEE.
https://arxiv.org/abs/1604.01357

Hartnett, K., (2017, October). Best-Ever Algorithm Found for Huge Streams of 
Data. Quanta Magazine, October 2017, online at: 
https://www.quantamagazine.org/best-ever-algorithm-found-for-huge-streams-of-data-20171024/


> Support ExpanderSketch algorithm for space and time efficient stream 
> processing.
> --------------------------------------------------------------------------------
>
>                 Key: KAFKA-6152
>                 URL: https://issues.apache.org/jira/browse/KAFKA-6152
>             Project: Kafka
>          Issue Type: New Feature
>          Components: core
>            Reporter: Edmon Begoli
>         Attachments: larsen2016.pdf
>
>   Original Estimate: 4,368h
>  Remaining Estimate: 4,368h
>
> Support a new ExpanderSketch algorithm (Larsen et al., 2016) based on 
> cluster-preserving clustering and considered the best contemporary streaming 
> algorithm (Quanta, 2017). 
> It achieves optimal O(ε^p^_log_n) space, O(_log_n) update time, and fast 
> O(ε^p^poly(_log_n)) query time, and _whp_ correctness
> Larsen, K. G., Nelson, J., Nguyên, H. L., & Thorup, M. (2016, October). Heavy 
> hitters via cluster-preserving clustering. In Foundations of Computer Science 
> (FOCS), 2016 IEEE 57th Annual Symposium on (pp. 61-70). IEEE.
> https://arxiv.org/abs/1604.01357
> Hartnett, K., (2017, October). Best-Ever Algorithm Found for Huge Streams of 
> Data. Quanta Magazine, October 2017, online at: 
> https://www.quantamagazine.org/best-ever-algorithm-found-for-huge-streams-of-data-20171024/



--
This message was sent by Atlassian JIRA
(v6.4.14#64029)

Reply via email to