[
https://issues.apache.org/jira/browse/KAFKA-17049?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]
Chris Egerton reassigned KAFKA-17049:
-------------------------------------
Assignee: yazgoo
> Incremental rebalances assign too many tasks for the same connector together
> ----------------------------------------------------------------------------
>
> Key: KAFKA-17049
> URL: https://issues.apache.org/jira/browse/KAFKA-17049
> Project: Kafka
> Issue Type: Bug
> Components: connect
> Reporter: yazgoo
> Assignee: yazgoo
> Priority: Major
>
> This follows https://issues.apache.org/jira/browse/KAFKA-10413
> When runnning the following script, which
> 1. runs one worker
> 2. declares two connectors
> 3. adds two more workers
>
> {code:java}
> #!/bin/bash
> set -xe
> dkill() {
> docker stop "$1" || true
> docker rm -v -f "$1" || true
> }
> launch_minio() {
> # Launch Minio (Fake S3)
> docker run --network host -d --name minio \
> -e MINIO_ROOT_USER=minioadmin \
> -e MINIO_ROOT_PASSWORD=minioadmin \
> minio/minio server --console-address :9001 /data
> docker exec -it minio mkdir /data/my-minio-bucket
> }
> launch_kafka_connect() {
> # Start Kafka Connect with S3 Connector
> docker run --network host -d --name "kafka-connect$1" \
> -e AWS_ACCESS_KEY_ID=minioadmin \
> -e AWS_SECRET_ACCESS_KEY=minioadmin \
> -e CONNECT_REST_ADVERTISED_HOST_NAME="k$1" \
> -e CONNECT_LISTENERS="http://localhost:808$1" \
> -e CONNECT_BOOTSTRAP_SERVERS=0.0.0.0:9092 \
> -e CONNECT_REST_PORT="808$1" \
> -e CONNECT_GROUP_ID="connect-cluster" \
> -e CONNECT_CONFIG_STORAGE_TOPIC="connect-configs" \
> -e CONNECT_OFFSET_STORAGE_TOPIC="connect-offsets" \
> -e CONNECT_STATUS_STORAGE_TOPIC="connect-status" \
> -e CONNECT_KEY_CONVERTER="org.apache.kafka.connect.json.JsonConverter" \
> -e CONNECT_VALUE_CONVERTER="org.apache.kafka.connect.json.JsonConverter"
> \
> -e CONNECT_VALUE_CONVERTER_SCHEMAS_ENABLE=false \
> -e
> CONNECT_INTERNAL_KEY_CONVERTER="org.apache.kafka.connect.json.JsonConverter" \
> -e
> CONNECT_INTERNAL_VALUE_CONVERTER="org.apache.kafka.connect.json.JsonConverter"
> \
> -e CONNECT_INTERNAL_VALUE_CONVERTER_SCHEMAS_ENABLE=false \
> -e
> CONNECT_PLUGIN_PATH="/usr/share/java,/usr/share/confluent-hub-components" \
> --entrypoint bash \
> confluentinc/cp-kafka-connect:7.6.1 \
> -c "confluent-hub install --no-prompt
> confluentinc/kafka-connect-s3:latest && /etc/confluent/docker/run"
> }
> cleanup_docker_env() {
> docker volume prune -f
> for container in $(for i in {1..9}; do echo "kafka-connect$i";done) kafka
> minio
> do
> dkill "$container"
> done
> }
> launch_kafka() {
> docker run --network host --hostname localhost --ulimit nofile=65536:65536
> -d --name kafka -p 9092:9092 apache/kafka
> for i in {1..2}
> do
> # Create a Kafka topic
> docker exec -it kafka /opt/kafka/bin/kafka-topics.sh --create
> --bootstrap-server 0.0.0.0:9092 --replication-factor 1 --partitions 12
> --topic "test_topic$i"
> done
> for topic in connect-configs connect-offsets connect-status
> do
> # with cleanup.policy=compact, we can't have more than 1 partition
> docker exec -it kafka /opt/kafka/bin/kafka-topics.sh --create
> --bootstrap-server 0.0.0.0:9092 --replication-factor 1 --partitions 1 --topic
> $topic --config cleanup.policy=compact
> done
> }
> cleanup_docker_env
> launch_kafka
> launch_minio
> launch_kafka_connect 1
> while true
> do
> sleep 5
> # Check if Kafka Connect is up
> curl http://localhost:8081/ || continue
> break
> done
> sleep 10
> for i in {1..2}
> do
> # Set up a connector
> curl -X POST -H "Content-Type: application/json" --data '{
> "name": "s3-connector'"$i"'",
> "config": {
> "connector.class": "io.confluent.connect.s3.S3SinkConnector",
> "tasks.max": "12",
> "topics": "test_topic'"$i"'",
> "s3.region": "us-east-1",
> "store.url": "http://0.0.0.0:9000",
> "s3.bucket.name": "my-minio-bucket",
> "s3.part.size": "5242880",
> "flush.size": "3",
> "storage.class": "io.confluent.connect.s3.storage.S3Storage",
> "format.class": "io.confluent.connect.s3.format.json.JsonFormat",
> "schema.generator.class":
> "io.confluent.connect.storage.hive.schema.DefaultSchemaGenerator",
> "schema.compatibility": "NONE"
> }
> }' http://localhost:8081/connectors
> done
> launch_kafka_connect 2
> launch_kafka_connect 3
> {code}
>
>
> When the script ends, I have the first worker taking all the connectors/tasks:
> {code:java}
> ❯ curl -s http://localhost:8081/connectors/s3-connector1/status | jq .tasks
> |grep worker_id | sort | uniq -c
> 12 "worker_id": "k1:8081"{code}
> {code:java}
> ❯ curl -s http://localhost:8081/connectors/s3-connector2/status | jq .tasks
> |grep worker_id | sort | uniq -c
> 12 "worker_id": "k1:8081"
> {code}
>
> Then I wait a few minutes,
> And I get the final state:
> {code:java}
> ❯ curl -s http://localhost:8081/connectors/s3-connector2/status | jq .tasks
> |grep worker_id | sort | uniq -c
> 6 "worker_id": "k2:8082"
> 6 "worker_id": "k3:8083"{code}
>
> {code:java}
> ❯ curl -s http://localhost:8081/connectors/s3-connector1/status | jq .tasks
> |grep worker_id | sort | uniq -c
> 8 "worker_id": "k1:8081"
> 2 "worker_id": "k2:8082"
> 2 "worker_id": "k3:8083"
> {code}
>
> In the end, we indeed get 8 tasks on each workers, but for distribution
> reasons , I think it should be (4, 4, 4) for each connector, because all
> connectors don't do the same amount of work, which will lead to a
> processing/network imbalance overall.
> In my test I always get the same outcome.
> This is consistent with what I see in production, which makes autoscaling
> impossible to use as is.
--
This message was sent by Atlassian Jira
(v8.20.10#820010)