Egon and Nico and others --

I'm quite excited about this space group business and Jmol. Probably 
some of these methods should be ported to the CDK, as they will have 
quite general interest. The three classes are:

  HallInfo  -- parses and inteprets Hall symbols,
               generating the associated matrices

  SymmetryOperation -- extends Matrix4f; parses and
               generates "x,y,z" lists and matrices

  SpaceGroup -- overall container for a space group;
               generates full operation list; looks up
               symbol names; identifies unique axis;
               does the actual atom coordinate operations


Q: Do you think we should set it up so that the list of 600+ space 
groups is read by Jmol from an external source only if/when it needs it?

Q: What's the proper way to do that -- would it be included in the 
distribution as a TXT file?

Q: Would Jmol read this automatically when it needed to? Or would we 
have some sort of DATA command that might read other data types as well. 
(Color schemes?) Or might we just set it up as a script file and use the 
mechanism already in place -- something like:


#_data spacegroup
....
....
....
#_end data

so that it all can be in a script file?

Syd, what do you know about the format of this sort of data? Do other 
programs read that data in a standard format? Perhaps XML?

Bob



-------- Original Message --------
Subject:        Re: [Fwd: Re: Space Groups]
Date:   Wed, 6 Sep 2006 09:44:08 +0800
From:   Sydney Hall <[EMAIL PROTECTED]>
To:     Bob Hanson <[EMAIL PROTECTED]>
CC:     peter murray-rust <[EMAIL PROTECTED]>
References:     <[EMAIL PROTECTED]> 
<[EMAIL PROTECTED]> 
<[EMAIL PROTECTED]>



Hi Bob and Peter. Ta for the communications. I'll give you a more
detailed response tomorrow when I'm in the lab again. I'm only an
occasional academic these days and at the moment most of that time
is taken up with the development of a new ddl for the IUCr (Peter
knows about this from Florence).

Two quick observations for the moment.

> Oh, yes. This is fabulous. In intriguing idea occurs to me. We  
> could make this totally general and totally customizable -- Your  
> file is in CIF format. How about if Jmol has none of this hardwired  
> -- or maybe some defaults hardwired -- but allows reading of this  
> CIF file as a replacement/supplement? So then anyone could expand  
> this as desired. If it's a living document, then the update to Jmol  
> would then just be the replacement of this file in come common  
> directory on a user's system. I savvy crystallographer could  
> augment it as desired.

We always externalise this sort of information from your software where
we can. Makes it simple to update and easy for users to understand.
We recommend the same approach be applied to validation tests and to
the use of cif dictionaries - early browsers internalised the dictionary
definitions and ignored the dynamic nature of these entries! :(

> rotation term 1
> input code: 4n; primitive code: 4zn
> order: 4; axisType: z; translation: n
> operator: -y+1/2,x+1/2,z+1/2
> Seitz matrix(12ths): [
>  [0.0    -1.0    0.0    6.0]
>  [1.0    0.0    0.0    6.0]
>  [0.0    0.0    1.0    6.0]
>  [0.0    0.0    0.0    1.0] ]

A small and obvious point on the above... only the translation
elements in your Seitz matrix are in 12ths. In matrices generated
by SYMGEN all elements are in 12ths - so its best to make this
point clear in your output... to avoid temporary puzzlement! :)

More later.

Cheers
Syd

PS: Peter, how did that paper you were writing at Florence on "methods
in schema" go? This may be relevant to our current prognostications.

------
Emeritus Professor Syd Hall
School Biomedical, Biomolecular & Chemical Sciences
University of Western Australia
Crawley, 6009  AUSTRALIA.
Ph: +61 (8) 6488 2725


On 05/09/2006, at 10:48 AM, Bob Hanson wrote:

> Dear Syd,
>
> Thanks for the quick reply. I have this working now, and I will  
> implement the nonstandard issues. I'm delighted that you are  
> available to work with us on this. Already I can see that this will  
> be a welcome addition. I've put in a mechanism to allow for either  
> reading the explicit operators listed in a CIF file or ignore them,  
> and already I've had a surprise or two. More on that after  
> interspersed comments below. I've CCed Peter on this because I'm  
> sure he will be at least as interested as I in your comments.
>
> Sydney Hall wrote:
>
>
>> Dear Bob
>>
>> This notation should be a useful addition to Jmol if only
>> to provide some origin specificity for nonconventional
>> space groups. I will help you with this where I can.
>>
>>
>>>
>>>  2. the second rotation (if N is 2) has an axis direction of
>>>         - a     if preceded by an N of 2 or 4
>>>         - *a+b* if preceded by an N of 3 or 6
>>>
>>> Should this read "a-b" rather than "a+b" in that second case? It   
>>> seems to me that what is intended is that the space group <P 3  
>>> 2>  is explicity <P 3z 2'> not <P 3z 2">, and 2' is a-b, not a+b.
>>>
>>
>>
>> Indeed it should be "a-b" in this case, and the second edition
>> of International Tables Vol B (2001) has corrected this error. I
>> hadn't appreciated until your mail that this old typo still exists
>> on Ralf's website! I will contact him today and get it fixed.
>>
>>
>>> 2. In the discussion of Table 4: based on the included list of   
>>> space groups, which I presume to be complete, it would appear  
>>> that  it is not possible to have 2' or 2" when the preceding axis  
>>> is NOT  Nz. I wonder why there is the discussion there of Nx and  
>>> Ny in  relation to 2' and 2". Is that necessary?
>>>
>>
>>
>> The notation is kept as general as possible. There is no obligation
>> in trigonal/hexagonal space groups to place a 3/6 fold rotation  
>> along z
>> though it is the usual convention. In some phase transition  
>> problems it
>> is highly desirable to use non-conventional axial settings.
>>
>>
> The Nx and Ny possibilities are implmented. Unfortunately I don't  
> see an easy way of clearly specifying them in notational form (just  
> for look-up purposes) other than this implicit dependence on the  
> previous rotational direction, but I can manage.
>
>
>>> 3. I guess my main question relates to the general  
>>> implementation  of Hall symbols. Is it intended that there be  
>>> exactly one Hall  symbol for each possible space group  
>>> possibility? That is, are  there exactly 530 legitimate Hall  
>>> symbols? Or is it conceivable/ appropriate for people to invent  
>>> their own equivalent set of Hall  symbols for any given space group?
>>>
>>
>>
>> This notation is not intended as a static space group identifier  
>> in the
>> sense that the H-M symbols are. It simply identifies the generator  
>> Sietz
>> matrices and as such is a general representation for any space group
>> symmetry in any axial or origin setting. It provides an exact  
>> computat-
>> ional approach. The H-M symbols are not general and are imprecise   
>> computationally. By their very nature, several Hall representations
>> (using a different choice of generator matrices) can generate the  
>> same
>> space group symmetry though there are some conventions that avoid  
>> this
>> being a distraction (computationally all representations are   
>> equivalent).
>>
>> I would recommend therefore that you treat the symmetry generation  
>> for
>> this approach in a completely general way. The table shown on Ralf's
>> website (and in Volume B) is intended really for mapping H-M  
>> symbols to
>> Hall symbols rather than the reverse. It is used extensively in  
>> the Acta
>> validation software (e.g. CIFCHECK) so that space group equivalent
>> positions can be easily generated and checked against those  
>> submitted.
>> As you will appreciate generating ep's from the generator matrices is
>> trivial and building the Hall notation from the ep's is not  
>> difficult.
>>
>>
> Right, Except for (nx ny nz), which I only implemented as (0 0 nz)  
> today -- but will fix momentarily -- I think I have all the  
> conversions in. I realize that many data files use the Hermann- 
> Mauguin symbols and not Hall, so there's still a need to translate  
> those. I suppose there is just going to have to be some flexibility/ 
> ambiguity there. Jmol is programmed to read explicit operator  
> listings in CIF and RES files, so provided those are there, there  
> will be no problem. The problem will only be if someone is reading  
> a file with just the H-M symbol and using unspecified origin and  
> such. Part of what I was interested in as well was allowing for  
> what I am calling "abbreviated H-M symbols" -- the sorts of things  
> you see in older references --- "P 2/1" insead of "P 1 2/1 1", for  
> instance. Jmol can find the unique axis and do the proper correlation.
>
>
>
>> I have attached a more recent version of the space group mapping file
>> than that on Ralf's website (this matches the one in the 2001  
>> edition of
>> IT Vol C). Both are correct but the latest version uses the more
>> "conventional" representations that appear in Acta and most CIF's.
>>
>> Hope this helps.... good luck with the implementation. Let me know
>> if I can help in any other respect.
>>
>>
> Oh, yes. This is fabulous. In intriguing idea occurs to me. We  
> could make this totally general and totally customizable -- Your  
> file is in CIF format. How about if Jmol has none of this hardwired  
> -- or maybe some defaults hardwired -- but allows reading of this  
> CIF file as a replacement/supplement? So then anyone could expand  
> this as desired. If it's a living document, then the update to Jmol  
> would then just be the replacement of this file in come common  
> directory on a user's system. I savvy crystallographer could  
> augment it as desired.
>
> I think the best thing at this point is for me to let others  
> suggest how they want it implemented. I'll send a message to users  
> and also CC you, Syd.
>
> I have a small number of additional question but will get this  
> initial implementation in first so you can take a look yourself and  
> offer suggestions.
>
> OK, here was my first surprise: http://www.stolaf.edu/academics/ 
> chemapps/jmol/docs/examples-11/data/quartz.cif curiously enough  
> does not have enough information in the naming  and cell parameters  
> to generate the given operators correctly. The H-M symbol given in  
> that CIF file is <P 32 2 1> (#154). When I look that up, I see <P  
> 32 2">. This is also what the cctbk explore_symmetry page gives.  
> But to get the same list of operators as in the CIF file, I have to  
> use <P 32 2" (0 0 4)>. So I'm wondering if that is a general  
> problem -- that conversions from (H-M+cell parameters) to (Hall) is  
> inherently ambiguous, and it is just basically impossible to use a  
> H-M symbol to generate the operators. Or, perhaps there is an error  
> in this CIF file. What do you think?
>
>
> Bob
>
>
>
>> Cheers
>> Syd
>> ------
>> Emeritus Professor Sydney R. Hall
>> School Biomedical, Biomolecular & Chemical Sciences
>> University of Western Australia
>> Crawley, 6009  AUSTRALIA.
>> Ph: +61 (8) 6488 2725
>>
>> --------------------------------------------------------------------- 
>> ---
>>
>>          #
>>          # hall symmetry notation
>>          #
>>          # table of ralf w. grosse-kunstleve, eth, zuerich.
>>          #
>>          # version june 1995
>>          #      updated  september 29 1995
>>          #      updated  july       9 1997
>>          #      updated  july      24 1998
>>          # last updated  june      11 2000
>>
>> data_notation
>>
>> loop_
>>    _monoclinic_extension   # cf. _symmetry_space_group_id
>>    _monoclinic_axis        # cf. it vol. a 1983 sec. 2.16.
>>    _monoclinic_setting     # cf. it vol. a 1983 tab. 2.16.1.
>>    _monoclinic_cellchoice  # cf. it vol. a 1983 sec. 2.16.(i) &  
>> fig. 2.6.4.
>>
>>     b   b  abc   1
>>     b1  b  abc   1
>>     b2  b  abc   2
>>     b3  b  abc   3
>>    -b   b  c-ba  1
>>    -b1  b  c-ba  1
>>    -b2  b  c-ba  2
>>    -b3  b  c-ba  3
>>     c   c  abc   1
>>     c1  c  abc   1
>>     c2  c  abc   2
>>     c3  c  abc   3
>>    -c   c  ba-c  1
>>    -c1  c  ba-c  1
>>    -c2  c  ba-c  2
>>    -c3  c  ba-c  3
>>     a   a  abc   1
>>     a1  a  abc   1
>>     a2  a  abc   2
>>     a3  a  abc   3
>>    -a   a  -acb  1
>>    -a1  a  -acb  1
>>    -a2  a  -acb  2
>>    -a3  a  -acb  3
>>
>>
>> loop_
>>    _symmetry_space_group_id
>>    _symmetry_space_group_name_sch
>>    _symmetry_space_group_name_h-m   # recognised iucr cif data names
>>    _symmetry_space_group_name_hall  # recognised iucr cif data names
>>
>>      1        c1^1    p_1          p_1                   2         
>> ci^1    p_-1         -p_1                  3:b      c2^1     
>> p_1_2_1      p_2y                  3:b      c2^1    p_2           
>> p_2y                  3:c      c2^1    p_1_1_2       
>> p_2                   3:a      c2^1    p_2_1_1       
>> p_2x                  4:b      c2^2    p_1_21_1      
>> p_2yb                 4:b      c2^2    p_1_21_1     p_2y1       
>> 4:b      c2^2    p_21         p_2yb                 4:c       
>> c2^2    p_1_1_21     p_2c                  4:c      c2^2     
>> p_1_1_21     p_21       4:a      c2^2    p_21_1_1      
>> p_2xa                 4:a      c2^2    p_21_1_1     p_2x1       
>> 5:b1     c2^3    c_1_2_1      c_2y                  5:b1      
>> c2^3    c_2          c_2y                  5:b2     c2^3     
>> a_1_2_1      a_2y                  5:b3     c2^3    i_1_2_1       
>> i_2y                  5:c1     c2^3    a_1_1_2       
>> a_2                   5:c2     c2^3    b_1_1_2       
>> b_2                   5:c3     c2^3    i_1_1_2       
>> i_2                   5:a1     c2^3    b_2_1_1       
>> b_2x                  5:a2     c2^3    c_2_1_1       
>> c_2x                  5:a3     c2^3    i_2_1_1       
>> i_2x                  6:b      cs^1    p_1_m_1       
>> p_-2y                 6:b      cs^1    p_m           
>> p_-2y                 6:c      cs^1    p_1_1_m       
>> p_-2                  6:a      cs^1    p_m_1_1       
>> p_-2x                 7:b1     cs^2    p_1_c_1       
>> p_-2yc                7:b1     cs^2    p_c           
>> p_-2yc                7:b2     cs^2    p_1_n_1       
>> p_-2yac               7:b2     cs^2    p_n           
>> p_-2yac               7:b3     cs^2    p_1_a_1       
>> p_-2ya                7:b3     cs^2    p_a           
>> p_-2ya                7:c1     cs^2    p_1_1_a       
>> p_-2a                 7:c2     cs^2    p_1_1_n       
>> p_-2ab                7:c3     cs^2    p_1_1_b       
>> p_-2b                 7:a1     cs^2    p_b_1_1       
>> p_-2xb                7:a2     cs^2    p_n_1_1       
>> p_-2xbc               7:a3     cs^2    p_c_1_1       
>> p_-2xc                8:b1     cs^3    c_1_m_1       
>> c_-2y                 8:b1     cs^3    c_m           
>> c_-2y                 8:b2     cs^3    a_1_m_1       
>> a_-2y                 8:b3     cs^3    i_1_m_1       
>> i_-2y                 8:b3     cs^3    i_m           
>> i_-2y                 8:c1     cs^3    a_1_1_m       
>> a_-2                  8:c2     cs^3    b_1_1_m       
>> b_-2                  8:c3     cs^3    i_1_1_m       
>> i_-2                  8:a1     cs^3    b_m_1_1       
>> b_-2x                 8:a2     cs^3    c_m_1_1       
>> c_-2x                 8:a3     cs^3    i_m_1_1       
>> i_-2x                 9:b1     cs^4    c_1_c_1       
>> c_-2yc                9:b1     cs^4    c_c           
>> c_-2yc                9:b2     cs^4    a_1_n_1      a_-2yab         
>> # a_-2yac            9:b3     cs^4    i_1_a_1       
>> i_-2ya                9:-b1    cs^4    a_1_a_1       
>> a_-2ya                9:-b2    cs^4    c_1_n_1      c_-2yac         
>> # c_-2ybc           9:-b3    cs^4    i_1_c_1       
>> i_-2yc                9:c1     cs^4    a_1_1_a       
>> a_-2a                 9:c2     cs^4    b_1_1_n      b_-2ab          
>> # b_-2bc           9:c3     cs^4    i_1_1_b       
>> i_-2b                 9:-c1    cs^4    b_1_1_b       
>> b_-2b                 9:-c2    cs^4    a_1_1_n      a_-2ab          
>> # a_-2ac        9:-c3    cs^4    i_1_1_a       
>> i_-2a                 9:a1     cs^4    b_b_1_1       
>> b_-2xb                9:a2     cs^4    c_n_1_1      c_-2xac         
>> # c_-2xbc      9:a3     cs^4    i_c_1_1      i_-2xc                 
>> 9:-a1    cs^4    c_c_1_1      c_-2xc                9:-a2     
>> cs^4    b_n_1_1      b_-2xab        # b_-2xbc
>>      9:-a3    cs^4    i_b_1_1      i_-2xb               10:b       
>> c2h^1   p_1_2/m_1    -p_2y                10:b      c2h^1   p_2/ 
>> m        -p_2y                10:c      c2h^1   p_1_1_2/m    - 
>> p_2                 10:a      c2h^1   p_2/m_1_1    - 
>> p_2x                11:b      c2h^2   p_1_21/m_1   - 
>> p_2yb               11:b      c2h^2   p_1_21/m_1   -p_2y1      
>> 11:b      c2h^2   p_21/m       -p_2yb               11:c       
>> c2h^2   p_1_1_21/m   -p_2c                11:c      c2h^2    
>> p_1_1_21/m   -p_21      11:a      c2h^2   p_21/m_1_1   - 
>> p_2xa               11:a      c2h^2   p_21/m_1_1   -p_2x1      
>> 12:b1     c2h^3   c_1_2/m_1    -c_2y                12:b1      
>> c2h^3   c_2/m        -c_2y                12:b2     c2h^3   a_1_2/ 
>> m_1    -a_2y                12:b3     c2h^3   i_1_2/m_1    - 
>> i_2y                12:b3     c2h^3   i_2/m        - 
>> i_2y                12:c1     c2h^3   a_1_1_2/m    - 
>> a_2                 12:c2     c2h^3   b_1_1_2/m    - 
>> b_2                 12:c3     c2h^3   i_1_1_2/m    - 
>> i_2                 12:a1     c2h^3   b_2/m_1_1    - 
>> b_2x                12:a2     c2h^3   c_2/m_1_1    - 
>> c_2x                12:a3     c2h^3   i_2/m_1_1    - 
>> i_2x                13:b1     c2h^4   p_1_2/c_1    - 
>> p_2yc               13:b1     c2h^4   p_2/c        - 
>> p_2yc               13:b2     c2h^4   p_1_2/n_1    - 
>> p_2yac              13:b2     c2h^4   p_2/n        - 
>> p_2yac              13:b3     c2h^4   p_1_2/a_1    - 
>> p_2ya               13:b3     c2h^4   p_2/a        - 
>> p_2ya               13:c1     c2h^4   p_1_1_2/a    - 
>> p_2a                13:c2     c2h^4   p_1_1_2/n    - 
>> p_2ab               13:c3     c2h^4   p_1_1_2/b    - 
>> p_2b                13:a1     c2h^4   p_2/b_1_1    - 
>> p_2xb               13:a2     c2h^4   p_2/n_1_1    - 
>> p_2xbc              13:a3     c2h^4   p_2/c_1_1    - 
>> p_2xc               14:b1     c2h^5   p_1_21/c_1   - 
>> p_2ybc              14:b1     c2h^5   p_21/c       - 
>> p_2ybc              14:b2     c2h^5   p_1_21/n_1   - 
>> p_2yn               14:b2     c2h^5   p_21/n       - 
>> p_2yn               14:b3     c2h^5   p_1_21/a_1   - 
>> p_2yab              14:b3     c2h^5   p_21/a       - 
>> p_2yab              14:c1     c2h^5   p_1_1_21/a   - 
>> p_2ac               14:c2     c2h^5   p_1_1_21/n   - 
>> p_2n                14:c3     c2h^5   p_1_1_21/b   - 
>> p_2bc               14:a1     c2h^5   p_21/b_1_1   - 
>> p_2xab              14:a2     c2h^5   p_21/n_1_1   - 
>> p_2xn               14:a3     c2h^5   p_21/c_1_1   - 
>> p_2xac              15:b1     c2h^6   c_1_2/c_1    - 
>> c_2yc               15:b1     c2h^6   c_2/c        - 
>> c_2yc               15:b2     c2h^6   a_1_2/n_1    -a_2yab         
>> # -a_2yac        15:b3     c2h^6   i_1_2/a_1    - 
>> i_2ya               15:b3     c2h^6   i_2/a        - 
>> i_2ya               15:-b1    c2h^6   a_1_2/a_1    - 
>> a_2ya               15:-b2    c2h^6   c_1_2/n_1    -c_2yac         
>> # -c_2ybc       15:-b2    c2h^6   c_2/n        -c_2yac        # - 
>> c_2ybc      15:-b3    c2h^6   i_1_2/c_1    -i_2yc                
>> 15:-b3    c2h^6   i_2/c        -i_2yc               15:c1      
>> c2h^6   a_1_1_2/a    -a_2a                15:c2     c2h^6    
>> b_1_1_2/n    -b_2ab         # -b_2bc      15:c3     c2h^6    
>> i_1_1_2/b    -i_2b                15:-c1    c2h^6   b_1_1_2/b    - 
>> b_2b                15:-c2    c2h^6   a_1_1_2/n    -a_2ab          
>> # -a_2ac       15:-c3    c2h^6   i_1_1_2/a    -i_2a                 
>> 15:a1     c2h^6   b_2/b_1_1    -b_2xb               15:a2      
>> c2h^6   c_2/n_1_1    -c_2xac        # -c_2xbc       15:a3      
>> c2h^6   i_2/c_1_1    -i_2xc               15:-a1    c2h^6   c_2/ 
>> c_1_1    -c_2xc               15:-a2    c2h^6   b_2/n_1_1    - 
>> b_2xab        # -b_2xbc        15:-a3    c2h^6   i_2/b_1_1    - 
>> i_2xb               16        d2^1    p_2_2_2       
>> p_2_2                17        d2^2    p_2_2_21      
>> p_2c_2               17        d2^2    p_2_2_21     p_21_2       
>> 17:cab    d2^2    p_21_2_2     p_2a_2a              17:bca     
>> d2^2    p_2_21_2     p_2_2b               18        d2^3     
>> p_21_21_2    p_2_2ab              18:cab    d2^3    p_2_21_21     
>> p_2bc_2              18:bca    d2^3    p_21_2_21     
>> p_2ac_2ac            19        d2^4    p_21_21_21    
>> p_2ac_2ab            20        d2^5    c_2_2_21      
>> c_2c_2               20        d2^5    c_2_2_21     c_21_2         
>> 20:cab    d2^5    a_21_2_2     a_2a_2a              20:cab     
>> d2^5    a_21_2_2     a_2a_21       20:bca    d2^5    b_2_21_2      
>> b_2_2b               21        d2^6    c_2_2_2       
>> c_2_2                21:cab    d2^6    a_2_2_2       
>> a_2_2                21:bca    d2^6    b_2_2_2       
>> b_2_2                22        d2^7    f_2_2_2       
>> f_2_2                23        d2^8    i_2_2_2       
>> i_2_2                24        d2^9    i_21_21_21    
>> i_2b_2c              25        c2v^1   p_m_m_2       
>> p_2_-2               25:cab    c2v^1   p_2_m_m       
>> p_-2_2               25:bca    c2v^1   p_m_2_m       
>> p_-2_-2              26        c2v^2   p_m_c_21      
>> p_2c_-2              26        c2v^2   p_m_c_21     p_21_-2      
>> 26:ba-c   c2v^2   p_c_m_21     p_2c_-2c             26:ba-c    
>> c2v^2   p_c_m_21     p_21_-2c     26:cab    c2v^2   p_21_m_a      
>> p_-2a_2a             26:-cba   c2v^2   p_21_a_m      
>> p_-2_2a              26:bca    c2v^2   p_b_21_m      
>> p_-2_-2b             26:a-cb   c2v^2   p_m_21_b      
>> p_-2b_-2             27        c2v^3   p_c_c_2       
>> p_2_-2c              27:cab    c2v^3   p_2_a_a       
>> p_-2a_2              27:bca    c2v^3   p_b_2_b       
>> p_-2b_-2b            28        c2v^4   p_m_a_2       
>> p_2_-2a              28        c2v^4   p_m_a_2       
>> p_2_-21         28:ba-c   c2v^4   p_b_m_2       
>> p_2_-2b              28:cab    c2v^4   p_2_m_b       
>> p_-2b_2              28:-cba   c2v^4   p_2_c_m       
>> p_-2c_2              28:-cba   c2v^4   p_2_c_m      p_-21_2        
>> 28:bca    c2v^4   p_c_2_m      p_-2c_-2c            28:a-cb    
>> c2v^4   p_m_2_a      p_-2a_-2a            29        c2v^5    
>> p_c_a_21     p_2c_-2ac            29:ba-c   c2v^5   p_b_c_21      
>> p_2c_-2b             29:cab    c2v^5   p_21_a_b      
>> p_-2b_2a             29:-cba   c2v^5   p_21_c_a      
>> p_-2ac_2a            29:bca    c2v^5   p_c_21_b      
>> p_-2bc_-2c           29:a-cb   c2v^5   p_b_21_a      
>> p_-2a_-2ab           30        c2v^6   p_n_c_2       
>> p_2_-2bc             30:ba-c   c2v^6   p_c_n_2       
>> p_2_-2ac             30:cab    c2v^6   p_2_n_a       
>> p_-2ac_2             30:-cba   c2v^6   p_2_a_n       
>> p_-2ab_2             30:bca    c2v^6   p_b_2_n       
>> p_-2ab_-2ab          30:a-cb   c2v^6   p_n_2_b       
>> p_-2bc_-2bc          31        c2v^7   p_m_n_21      
>> p_2ac_-2             31:ba-c   c2v^7   p_n_m_21      
>> p_2bc_-2bc           31:cab    c2v^7   p_21_m_n      
>> p_-2ab_2ab           31:-cba   c2v^7   p_21_n_m      
>> p_-2_2ac             31:bca    c2v^7   p_n_21_m      
>> p_-2_-2bc            31:a-cb   c2v^7   p_m_21_n      
>> p_-2ab_-2            32        c2v^8   p_b_a_2       
>> p_2_-2ab             32:cab    c2v^8   p_2_c_b       
>> p_-2bc_2             32:bca    c2v^8   p_c_2_a       
>> p_-2ac_-2ac          33        c2v^9   p_n_a_21      
>> p_2c_-2n             33        c2v^9   p_n_a_21     p_21_-2n       
>> 33:ba-c   c2v^9   p_b_n_21     p_2c_-2ab            33:ba-c    
>> c2v^9   p_b_n_21     p_21_-2ab      33:cab    c2v^9   p_21_n_b      
>> p_-2bc_2a            33:cab    c2v^9   p_21_n_b      
>> p_-2bc_21       33:-cba   c2v^9   p_21_c_n      
>> p_-2n_2a             33:-cba   c2v^9   p_21_c_n      
>> p_-2n_21         33:bca    c2v^9   p_c_21_n      
>> p_-2n_-2ac           33:a-cb   c2v^9   p_n_21_a      
>> p_-2ac_-2n           34        c2v^10  p_n_n_2       
>> p_2_-2n              34:cab    c2v^10  p_2_n_n       
>> p_-2n_2              34:bca    c2v^10  p_n_2_n       
>> p_-2n_-2n            35        c2v^11  c_m_m_2       
>> c_2_-2               35:cab    c2v^11  a_2_m_m       
>> a_-2_2               35:bca    c2v^11  b_m_2_m       
>> b_-2_-2              36        c2v^12  c_m_c_21      
>> c_2c_-2              36        c2v^12  c_m_c_21     c_21_-2
>>     36:ba-c   c2v^12  c_c_m_21     c_2c_-2c             36:ba-c    
>> c2v^12  c_c_m_21     c_21_-2c
>>     36:cab    c2v^12  a_21_m_a     a_-2a_2a             36:cab     
>> c2v^12  a_21_m_a     a_-2a_21     36:-cba   c2v^12  a_21_a_m      
>> a_-2_2a              36:-cba   c2v^12  a_21_a_m     a_-2_21        
>> 36:bca    c2v^12  b_b_21_m     b_-2_-2b             36:a-cb    
>> c2v^12  b_m_21_b     b_-2b_-2             37        c2v^13   
>> c_c_c_2      c_2_-2c              37:cab    c2v^13  a_2_a_a       
>> a_-2a_2              37:bca    c2v^13  b_b_2_b       
>> b_-2b_-2b            38        c2v^14  a_m_m_2       
>> a_2_-2               38:ba-c   c2v^14  b_m_m_2       
>> b_2_-2               38:cab    c2v^14  b_2_m_m       
>> b_-2_2               38:-cba   c2v^14  c_2_m_m       
>> c_-2_2               38:bca    c2v^14  c_m_2_m       
>> c_-2_-2              38:a-cb   c2v^14  a_m_2_m       
>> a_-2_-2              39        c2v^15  a_b_m_2      a_2_-2b         
>> # a_2_-2c < Jun2000
>>     39:ba-c   c2v^15  b_m_a_2      b_2_-2a        # b_2_-2c        
>> 39:cab    c2v^15  b_2_c_m      b_-2a_2        # b_-2c_2      39:- 
>> cba   c2v^15  c_2_m_b      c_-2a_2        # c_-2b_2     39:bca     
>> c2v^15  c_m_2_a      c_-2a_-2a      # c_-2b_-2b      39:a-cb    
>> c2v^15  a_c_2_m      a_-2b_-2b      # a_-2c_-2c < Jun2000
>>     40        c2v^16  a_m_a_2      a_2_-2a              40:ba-c    
>> c2v^16  b_b_m_2      b_2_-2b              40:cab    c2v^16   
>> b_2_m_b      b_-2b_2              40:-cba   c2v^16  c_2_c_m       
>> c_-2c_2              40:bca    c2v^16  c_c_2_m       
>> c_-2c_-2c            40:a-cb   c2v^16  a_m_2_a       
>> a_-2a_-2a            41        c2v^17  a_b_a_2      a_2_-2ab        
>> # a_2_-2ac          41:ba-c   c2v^17  b_b_a_2      b_2_-2ab        
>> # b_2_-2bc
>>     41:cab    c2v^17  b_2_c_b      b_-2ab_2       # b_-2bc_2      
>> 41:-cba   c2v^17  c_2_c_b      c_-2ac_2       # c_-2bc_2       
>> 41:bca    c2v^17  c_c_2_a      c_-2ac_-2ac    # c_-2bc_-2bc
>>     41:a-cb   c2v^17  a_c_2_a      a_-2ab_-2ab    #  
>> a_-2ac_-2ac     42        c2v^18  f_m_m_2       
>> f_2_-2               42:cab    c2v^18  f_2_m_m       
>> f_-2_2               42:bca    c2v^18  f_m_2_m       
>> f_-2_-2              43        c2v^19  f_d_d_2       
>> f_2_-2d              43:cab    c2v^19  f_2_d_d       
>> f_-2d_2              43:bca    c2v^19  f_d_2_d       
>> f_-2d_-2d            44        c2v^20  i_m_m_2       
>> i_2_-2               44:cab    c2v^20  i_2_m_m       
>> i_-2_2               44:bca    c2v^20  i_m_2_m       
>> i_-2_-2              45        c2v^21  i_b_a_2       
>> i_2_-2c              45:cab    c2v^21  i_2_c_b       
>> i_-2a_2              45:bca    c2v^21  i_c_2_a       
>> i_-2b_-2b            46        c2v^22  i_m_a_2       
>> i_2_-2a              46:ba-c   c2v^22  i_b_m_2       
>> i_2_-2b              46:cab    c2v^22  i_2_m_b       
>> i_-2b_2              46:-cba   c2v^22  i_2_c_m       
>> i_-2c_2              46:bca    c2v^22  i_c_2_m       
>> i_-2c_-2c            46:a-cb   c2v^22  i_m_2_a       
>> i_-2a_-2a            47        d2h^1   p_m_m_m      - 
>> p_2_2               48:1      d2h^2   p_n_n_n:1     
>> p_2_2_-1n            48:2      d2h^2   p_n_n_n:2    - 
>> p_2ab_2bc           49        d2h^3   p_c_c_m      - 
>> p_2_2c              49:cab    d2h^3   p_m_a_a      - 
>> p_2a_2              49:bca    d2h^3   p_b_m_b      - 
>> p_2b_2b             50:1      d2h^4   p_b_a_n:1     
>> p_2_2_-1ab           50:2      d2h^4   p_b_a_n:2    - 
>> p_2ab_2b            50:1cab   d2h^4   p_n_c_b:1     
>> p_2_2_-1bc           50:2cab   d2h^4   p_n_c_b:2    - 
>> p_2b_2bc            50:1bca   d2h^4   p_c_n_a:1     
>> p_2_2_-1ac           50:2bca   d2h^4   p_c_n_a:2    - 
>> p_2a_2c             51        d2h^5   p_m_m_a      - 
>> p_2a_2a             51:ba-c   d2h^5   p_m_m_b      - 
>> p_2b_2              51:cab    d2h^5   p_b_m_m      - 
>> p_2_2b              51:-cba   d2h^5   p_c_m_m      - 
>> p_2c_2c             51:bca    d2h^5   p_m_c_m      - 
>> p_2c_2              51:a-cb   d2h^5   p_m_a_m      - 
>> p_2_2a              52        d2h^6   p_n_n_a      - 
>> p_2a_2bc            52:ba-c   d2h^6   p_n_n_b      - 
>> p_2b_2n             52:cab    d2h^6   p_b_n_n      - 
>> p_2n_2b             52:-cba   d2h^6   p_c_n_n      - 
>> p_2ab_2c            52:bca    d2h^6   p_n_c_n      - 
>> p_2ab_2n            52:a-cb   d2h^6   p_n_a_n      - 
>> p_2n_2bc            53        d2h^7   p_m_n_a      - 
>> p_2ac_2             53:ba-c   d2h^7   p_n_m_b      - 
>> p_2bc_2bc           53:cab    d2h^7   p_b_m_n      - 
>> p_2ab_2ab           53:-cba   d2h^7   p_c_n_m      - 
>> p_2_2ac             53:bca    d2h^7   p_n_c_m      - 
>> p_2_2bc             53:a-cb   d2h^7   p_m_a_n      - 
>> p_2ab_2             54        d2h^8   p_c_c_a      - 
>> p_2a_2ac            54:ba-c   d2h^8   p_c_c_b      - 
>> p_2b_2c             54:cab    d2h^8   p_b_a_a      - 
>> p_2a_2b             54:-cba   d2h^8   p_c_a_a      - 
>> p_2ac_2c            54:bca    d2h^8   p_b_c_b      - 
>> p_2bc_2b            54:a-cb   d2h^8   p_b_a_b      - 
>> p_2b_2ab            55        d2h^9   p_b_a_m      - 
>> p_2_2ab             55:cab    d2h^9   p_m_c_b      - 
>> p_2bc_2             55:bca    d2h^9   p_c_m_a      - 
>> p_2ac_2ac           56        d2h^10  p_c_c_n      - 
>> p_2ab_2ac           56:cab    d2h^10  p_n_a_a      - 
>> p_2ac_2bc           56:bca    d2h^10  p_b_n_b      - 
>> p_2bc_2ab           57        d2h^11  p_b_c_m      - 
>> p_2c_2b             57:ba-c   d2h^11  p_c_a_m      - 
>> p_2c_2ac            57:cab    d2h^11  p_m_c_a      - 
>> p_2ac_2a            57:-cba   d2h^11  p_m_a_b      - 
>> p_2b_2a             57:bca    d2h^11  p_b_m_a      - 
>> p_2a_2ab            57:a-cb   d2h^11  p_c_m_b      - 
>> p_2bc_2c            58        d2h^12  p_n_n_m      - 
>> p_2_2n              58:cab    d2h^12  p_m_n_n      - 
>> p_2n_2              58:bca    d2h^12  p_n_m_n      - 
>> p_2n_2n             59:1      d2h^13  p_m_m_n:1     
>> p_2_2ab_-1ab         59:2      d2h^13  p_m_m_n:2    - 
>> p_2ab_2a            59:1cab   d2h^13  p_n_m_m:1     
>> p_2bc_2_-1bc         59:2cab   d2h^13  p_n_m_m:2    - 
>> p_2c_2bc            59:1bca   d2h^13  p_m_n_m:1     
>> p_2ac_2ac_-1ac       59:2bca   d2h^13  p_m_n_m:2    - 
>> p_2c_2a             60        d2h^14  p_b_c_n      - 
>> p_2n_2ab            60:ba-c   d2h^14  p_c_a_n      - 
>> p_2n_2c             60:cab    d2h^14  p_n_c_a      - 
>> p_2a_2n             60:-cba   d2h^14  p_n_a_b      - 
>> p_2bc_2n            60:bca    d2h^14  p_b_n_a      - 
>> p_2ac_2b            60:a-cb   d2h^14  p_c_n_b      - 
>> p_2b_2ac            61        d2h^15  p_b_c_a      - 
>> p_2ac_2ab           61:ba-c   d2h^15  p_c_a_b      - 
>> p_2bc_2ac           62        d2h^16  p_n_m_a      - 
>> p_2ac_2n            62:ba-c   d2h^16  p_m_n_b      - 
>> p_2bc_2a            62:cab    d2h^16  p_b_n_m      - 
>> p_2c_2ab            62:-cba   d2h^16  p_c_m_n      - 
>> p_2n_2ac            62:bca    d2h^16  p_m_c_n      - 
>> p_2n_2a             62:a-cb   d2h^16  p_n_a_m      - 
>> p_2c_2n             63        d2h^17  c_m_c_m      - 
>> c_2c_2              63:ba-c   d2h^17  c_c_m_m      - 
>> c_2c_2c             63:cab    d2h^17  a_m_m_a      - 
>> a_2a_2a             63:-cba   d2h^17  a_m_a_m      - 
>> a_2_2a              63:bca    d2h^17  b_b_m_m      - 
>> b_2_2b              63:a-cb   d2h^17  b_m_m_b      - 
>> b_2b_2              64        d2h^18  c_m_c_a      -c_2ac_2        
>> # -c_2bc_2         64:ba-c   d2h^18  c_c_m_b      -c_2ac_2ac     #  
>> -c_2bc_2bc      64:cab    d2h^18  a_b_m_a      -a_2ab_2ab     # - 
>> a_2ac_2ac     64:-cba   d2h^18  a_c_a_m      -a_2_2ab       # - 
>> a_2_2ac      64:bca    d2h^18  b_b_c_m      -b_2_2ab       # - 
>> b_2_2bc     64:a-cb   d2h^18  b_m_a_b      -b_2ab_2       # -b_2bc_2
>>     65        d2h^19  c_m_m_m      -c_2_2               65:cab     
>> d2h^19  a_m_m_m      -a_2_2               65:bca    d2h^19   
>> b_m_m_m      -b_2_2               66        d2h^20  c_c_c_m      - 
>> c_2_2c              66:cab    d2h^20  a_m_a_a      - 
>> a_2a_2              66:bca    d2h^20  b_b_m_b      - 
>> b_2b_2b             67        d2h^21  c_m_m_a      -c_2a_2         
>> # -c_2b_2         67:ba-c   d2h^21  c_m_m_b      -c_2a_2a       # - 
>> c_2b_2b       67:cab    d2h^21  a_b_m_m      -a_2b_2b       # - 
>> a_2c_2c      67:-cba   d2h^21  a_c_m_m      -a_2_2b        # - 
>> a_2_2c  < Jun2000
>>     67:bca    d2h^21  b_m_c_m      -b_2_2a        # -b_2_2c       
>> 67:a-cb   d2h^21  b_m_a_m      -b_2a_2        # -b_2c_2      
>> 68:1      d2h^22  c_c_c_a:1    c_2_2_-1ac     #  
>> c_2_2_-1bc          68:2      d2h^22  c_c_c_a:2    -c_2a_2ac       
>> # -c_2b_2bc          68:1ba-c  d2h^22  c_c_c_b:1    c_2_2_-1ac      
>> # c_2_2_-1bc        68:2ba-c  d2h^22  c_c_c_b:2    -c_2a_2c        
>> # -c_2b_2c         68:1cab   d2h^22  a_b_a_a:1    a_2_2_-1ab     #  
>> a_2_2_-1ac      68:2cab   d2h^22  a_b_a_a:2    -a_2a_2b       # - 
>> a_2a_2c  < Jun2000
>>     68:1-cba  d2h^22  a_c_a_a:1    a_2_2_-1ab     # a_2_2_-1ac      
>> 68:2-cba  d2h^22  a_c_a_a:2    -a_2ab_2b      # -a_2ac_2c      
>> 68:1bca   d2h^22  b_b_c_b:1    b_2_2_-1ab     # b_2_2_-1bc          
>> 68:2bca   d2h^22  b_b_c_b:2    -b_2ab_2b      # -b_2bc_2b          
>> 68:1a-cb  d2h^22  b_b_a_b:1    b_2_2_-1ab     # b_2_2_-1bc        
>> 68:2a-cb  d2h^22  b_b_a_b:2    -b_2b_2ab      # -b_2b_2bc        
>> 69        d2h^23  f_m_m_m      -f_2_2               70:1       
>> d2h^24  f_d_d_d:1    f_2_2_-1d            70:2      d2h^24   
>> f_d_d_d:2    -f_2uv_2vw           71        d2h^25  i_m_m_m      - 
>> i_2_2               72        d2h^26  i_b_a_m      - 
>> i_2_2c              72:cab    d2h^26  i_m_c_b      - 
>> i_2a_2              72:bca    d2h^26  i_c_m_a      - 
>> i_2b_2b             73        d2h^27  i_b_c_a      - 
>> i_2b_2c             73:ba-c   d2h^27  i_c_a_b      - 
>> i_2a_2b             74        d2h^28  i_m_m_a      - 
>> i_2b_2              74:ba-c   d2h^28  i_m_m_b      - 
>> i_2a_2a             74:cab    d2h^28  i_b_m_m      - 
>> i_2c_2c             74:-cba   d2h^28  i_c_m_m      - 
>> i_2_2b              74:bca    d2h^28  i_m_c_m      - 
>> i_2_2a              74:a-cb   d2h^28  i_m_a_m      - 
>> i_2c_2              75        c4^1    p_4           
>> p_4                  76        c4^2    p_41          
>> p_4w                 76        c4^2    p_41         p_41      
>> 77        c4^3    p_42         p_4c                 77         
>> c4^3    p_42         p_42      78        c4^4    p_43          
>> p_4cw                78        c4^4    p_43         p_43         
>> 79        c4^5    i_4          i_4                  80         
>> c4^6    i_41         i_4bw                81        s4^1     
>> p_-4         p_-4                 82        s4^2    i_-4          
>> i_-4                 83        c4h^1   p_4/m        - 
>> p_4                 84        c4h^2   p_42/m       - 
>> p_4c                84        c4h^2   p_42/m       -p_42           
>> 85:1      c4h^3   p_4/n:1      p_4ab_-1ab           85:2       
>> c4h^3   p_4/n:2      -p_4a                86:1      c4h^4   p_42/n: 
>> 1     p_4n_-1n             86:2      c4h^4   p_42/n:2     - 
>> p_4bc               87        c4h^5   i_4/m        - 
>> i_4                 88:1      c4h^6   i_41/a:1      
>> i_4bw_-1bw           88:2      c4h^6   i_41/a:2     - 
>> i_4ad               89        d4^1    p_4_2_2       
>> p_4_2                90        d4^2    p_4_21_2      
>> p_4ab_2ab            91        d4^3    p_41_2_2      
>> p_4w_2c              91        d4^3    p_41_2_2     p_41_2c      
>> 92        d4^4    p_41_21_2    p_4abw_2nw           93         
>> d4^5    p_42_2_2     p_4c_2               93        d4^5     
>> p_42_2_2     p_42_2       94        d4^6    p_42_21_2     
>> p_4n_2n              95        d4^7    p_43_2_2      
>> p_4cw_2c             95        d4^7    p_43_2_2     p_43_2c        
>> 96        d4^8    p_43_21_2    p_4nw_2abw           97         
>> d4^9    i_4_2_2      i_4_2                98        d4^10    
>> i_41_2_2     i_4bw_2bw            99        c4v^1   p_4_m_m       
>> p_4_-2              100        c4v^2   p_4_b_m       
>> p_4_-2ab            101        c4v^3   p_42_c_m      
>> p_4c_-2c            101        c4v^3   p_42_c_m     p_42_-2c        
>> 102        c4v^4   p_42_n_m     p_4n_-2n            103         
>> c4v^5   p_4_c_c      p_4_-2c             104        c4v^6    
>> p_4_n_c      p_4_-2n             105        c4v^7   p_42_m_c      
>> p_4c_-2             105        c4v^7   p_42_m_c      
>> p_42_-2         106        c4v^8   p_42_b_c      
>> p_4c_-2ab           106        c4v^8   p_42_b_c     p_42_-2ab       
>> 107        c4v^9   i_4_m_m      i_4_-2              108         
>> c4v^10  i_4_c_m      i_4_-2c             109        c4v^11   
>> i_41_m_d     i_4bw_-2            110        c4v^12  i_41_c_d      
>> i_4bw_-2c           111        d2d^1   p_-4_2_m      
>> p_-4_2              112        d2d^2   p_-4_2_c      
>> p_-4_2c             113        d2d^3   p_-4_21_m     
>> p_-4_2ab            114        d2d^4   p_-4_21_c     
>> p_-4_2n             115        d2d^5   p_-4_m_2      
>> p_-4_-2             116        d2d^6   p_-4_c_2      
>> p_-4_-2c            117        d2d^7   p_-4_b_2      
>> p_-4_-2ab           118        d2d^8   p_-4_n_2      
>> p_-4_-2n            119        d2d^9   i_-4_m_2      
>> i_-4_-2             120        d2d^10  i_-4_c_2      
>> i_-4_-2c            121        d2d^11  i_-4_2_m      
>> i_-4_2              122        d2d^12  i_-4_2_d      
>> i_-4_2bw            123        d4h^1   p_4/m_m_m    - 
>> p_4_2              124        d4h^2   p_4/m_c_c    - 
>> p_4_2c             125:1      d4h^3   p_4/n_b_m:1   
>> p_4_2_-1ab          125:2      d4h^3   p_4/n_b_m:2  - 
>> p_4a_2b            126:1      d4h^4   p_4/n_n_c:1   
>> p_4_2_-1n           126:2      d4h^4   p_4/n_n_c:2  - 
>> p_4a_2bc           127        d4h^5   p_4/m_b_m    - 
>> p_4_2ab            128        d4h^6   p_4/m_n_c    - 
>> p_4_2n             129:1      d4h^7   p_4/n_m_m:1   
>> p_4ab_2ab_-1ab      129:2      d4h^7   p_4/n_m_m:2  - 
>> p_4a_2a            130:1      d4h^8   p_4/n_c_c:1   
>> p_4ab_2n_-1ab       130:2      d4h^8   p_4/n_c_c:2  - 
>> p_4a_2ac           131        d4h^9   p_42/m_m_c   - 
>> p_4c_2             132        d4h^10  p_42/m_c_m   - 
>> p_4c_2c            133:1      d4h^11  p_42/n_b_c:1  
>> p_4n_2c_-1n         133:2      d4h^11  p_42/n_b_c:2 - 
>> p_4ac_2b           134:1      d4h^12  p_42/n_n_m:1  
>> p_4n_2_-1n          134:2      d4h^12  p_42/n_n_m:2 - 
>> p_4ac_2bc          135        d4h^13  p_42/m_b_c   - 
>> p_4c_2ab           135        d4h^13  p_42/m_b_c   -p_42_2ab        
>> 136        d4h^14  p_42/m_n_m   -p_4n_2n            137:1       
>> d4h^15  p_42/n_m_c:1 p_4n_2n_-1n         137:2      d4h^15  p_42/ 
>> n_m_c:2 -p_4ac_2a           138:1      d4h^16  p_42/n_c_m:1  
>> p_4n_2ab_-1n        138:2      d4h^16  p_42/n_c_m:2 - 
>> p_4ac_2ac          139        d4h^17  i_4/m_m_m    - 
>> i_4_2              140        d4h^18  i_4/m_c_m    - 
>> i_4_2c             141:1      d4h^19  i_41/a_m_d:1  
>> i_4bw_2bw_-1bw      141:2      d4h^19  i_41/a_m_d:2 - 
>> i_4bd_2            142:1      d4h^20  i_41/a_c_d:1  
>> i_4bw_2aw_-1bw      142:2      d4h^20  i_41/a_c_d:2 - 
>> i_4bd_2c           143        c3^1    p_3           
>> p_3                 144        c3^2    p_31          
>> p_31                145        c3^3    p_32          
>> p_32                146:h      c3^4    r_3:h         
>> r_3                 146:r      c3^4    r_3:r         
>> p_3*                147        c3i^1   p_-3         - 
>> p_3                148:h      c3i^2   r_-3:h       - 
>> r_3                148:r      c3i^2   r_-3:r       - 
>> p_3*               149        d3^1    p_3_1_2       
>> p_3_2               150        d3^2    p_3_2_1       
>> p_3_2"              151        d3^3    p_31_1_2     p_31_2_(0_0_4)  
>> # p_31_2c_(0_0_1)
>>    152        d3^4    p_31_2_1     p_31_2"             153         
>> d3^5    p_32_1_2     p_32_2_(0_0_2) # p_32_2c_(0_0_-1)
>>    154        d3^6    p_32_2_1     p_32_2"             155:h       
>> d3^7    r_3_2:h      r_3_2"              155:r      d3^7     
>> r_3_2:r      p_3*_2              156        c3v^1   p_3_m_1       
>> p_3_-2"             157        c3v^2   p_3_1_m       
>> p_3_-2              158        c3v^3   p_3_c_1       
>> p_3_-2"c            159        c3v^4   p_3_1_c       
>> p_3_-2c             160:h      c3v^5   r_3_m:h       
>> r_3_-2"             160:r      c3v^5   r_3_m:r       
>> p_3*_-2             161:h      c3v^6   r_3_c:h       
>> r_3_-2"c            161:r      c3v^6   r_3_c:r       
>> p_3*_-2n            162        d3d^1   p_-3_1_m     - 
>> p_3_2              163        d3d^2   p_-3_1_c     - 
>> p_3_2c             164        d3d^3   p_-3_m_1     - 
>> p_3_2"             165        d3d^4   p_-3_c_1     - 
>> p_3_2"c            166:h      d3d^5   r_-3_m:h     - 
>> r_3_2"             166:r      d3d^5   r_-3_m:r     - 
>> p_3*_2             167:h      d3d^6   r_-3_c:h     - 
>> r_3_2"c            167:r      d3d^6   r_-3_c:r     - 
>> p_3*_2n            168        c6^1    p_6           
>> p_6                 169        c6^2    p_61          
>> p_61                170        c6^3    p_65          
>> p_65                171        c6^4    p_62          
>> p_62                172        c6^5    p_64          
>> p_64                173        c6^6    p_63          
>> p_6c                173        c6^6    p_63         p_63       
>> 174        c3h^1   p_-6         p_-6                175         
>> c6h^1   p_6/m        -p_6                176        c6h^2   p_63/ 
>> m       -p_6c               176        c6h^2   p_63/m       - 
>> p_63      177        d6^1    p_6_2_2      p_6_2                
>> 178        d6^2    p_61_2_2     p_61_2_(0_0_5) # p_61_2_(0_0_-1)
>>    179        d6^3    p_65_2_2     p_65_2_(0_0_1)      180         
>> d6^4    p_62_2_2     p_62_2_(0_0_4) # p_62_2c_(0_0_1)
>>    181        d6^5    p_64_2_2     p_64_2_(0_0_2) # p_64_2c_(0_0_-1)
>>    182        d6^6    p_63_2_2     p_6c_2c             182         
>> d6^6    p_63_2_2     p_63_2c          183        c6v^1    
>> p_6_m_m      p_6_-2              184        c6v^2   p_6_c_c       
>> p_6_-2c             185        c6v^3   p_63_c_m      
>> p_6c_-2             185        c6v^3   p_63_c_m     p_63_-2      
>> 186        c6v^4   p_63_m_c     p_6c_-2c            186         
>> c6v^4   p_63_m_c     p_63_-2c     187        d3h^1   p_-6_m_2      
>> p_-6_2              188        d3h^2   p_-6_c_2      
>> p_-6c_2             189        d3h^3   p_-6_2_m      
>> p_-6_-2             190        d3h^4   p_-6_2_c      
>> p_-6c_-2c           191        d6h^1   p_6/m_m_m    - 
>> p_6_2              192        d6h^2   p_6/m_c_c    - 
>> p_6_2c             193        d6h^3   p_63/m_c_m   - 
>> p_6c_2             193        d6h^3   p_63/m_c_m   -p_63_2        
>> 194        d6h^4   p_63/m_m_c   -p_6c_2c            194         
>> d6h^4   p_63/m_m_c   -p_63_2c       195        t^1      
>> p_2_3        p_2_2_3             196        t^2     f_2_3         
>> f_2_2_3             197        t^3     i_2_3         
>> i_2_2_3             198        t^4     p_21_3        
>> p_2ac_2ab_3         199        t^5     i_21_3        
>> i_2b_2c_3           200        th^1    p_m_-3       - 
>> p_2_2_3            201:1      th^2    p_n_-3:1      
>> p_2_2_3_-1n         201:2      th^2    p_n_-3:2     - 
>> p_2ab_2bc_3        202        th^3    f_m_-3       - 
>> f_2_2_3            203:1      th^4    f_d_-3:1      
>> f_2_2_3_-1d         203:2      th^4    f_d_-3:2     - 
>> f_2uv_2vw_3        204        th^5    i_m_-3       - 
>> i_2_2_3            205        th^6    p_a_-3       - 
>> p_2ac_2ab_3        206        th^7    i_a_-3       - 
>> i_2b_2c_3          207        o^1     p_4_3_2       
>> p_4_2_3             208        o^2     p_42_3_2      
>> p_4n_2_3            209        o^3     f_4_3_2       
>> f_4_2_3             210        o^4     f_41_3_2      
>> f_4d_2_3            211        o^5     i_4_3_2       
>> i_4_2_3             212        o^6     p_43_3_2      
>> p_4acd_2ab_3        213        o^7     p_41_3_2      
>> p_4bd_2ab_3         214        o^8     i_41_3_2      
>> i_4bd_2c_3          215        td^1    p_-4_3_m      
>> p_-4_2_3            216        td^2    f_-4_3_m      
>> f_-4_2_3            217        td^3    i_-4_3_m      
>> i_-4_2_3            218        td^4    p_-4_3_n      
>> p_-4n_2_3           219        td^5    f_-4_3_c     f_-4a_2_3       
>> # f_-4c_2_3       220        td^6    i_-4_3_d      
>> i_-4bd_2c_3         221        oh^1    p_m_-3_m     - 
>> p_4_2_3            222:1      oh^2    p_n_-3_n:1    
>> p_4_2_3_-1n         222:2      oh^2    p_n_-3_n:2   - 
>> p_4a_2bc_3         223        oh^3    p_m_-3_n     - 
>> p_4n_2_3           224:1      oh^4    p_n_-3_m:1    
>> p_4n_2_3_-1n        224:2      oh^4    p_n_-3_m:2   - 
>> p_4bc_2bc_3        225        oh^5    f_m_-3_m     - 
>> f_4_2_3            226        oh^6    f_m_-3_c     -f_4a_2_3       
>> # -f_4c_2_3      227:1      oh^7    f_d_-3_m:1    
>> f_4d_2_3_-1d        227:2      oh^7    f_d_-3_m:2   - 
>> f_4vw_2vw_3        228:1      oh^8    f_d_-3_c:1   f_4d_2_3_-1ad   
>> # f_4d_2_3_-1cd     228:2      oh^8    f_d_-3_c:2   -f_4ud_2vw_3    
>> # -f_4cvw_2vw_3        229        oh^9    i_m_-3_m     - 
>> i_4_2_3           230        oh^10   i_a_-3_d     -i_4bd_2c_3
>>
>> --------------------------------------------------------------------- 
>> ---
>>
>>
>>
>> On 04/09/2006, at 6:01 PM, Bob Hanson wrote:
>>
>>
>>> Dear Dr. Hall,
>>>
>>> My name is Bob Hanson; I'm a professor at St. Olaf College in   
>>> Northfield, Minnesota, and also the lead developer of the Jmol   
>>> molecular visualization application/applet <http:// 
>>> www.stolaf.edu/ academics/chemapps/jmol>. The Jmol applet has  
>>> rich functionality,  one of which is the ability to be read CIF  
>>> and RES files and to  apply the appropriate symmetry operators  
>>> indicated in these files.  A demo of this capability is at  
>>> <http://fusion.stolaf.edu/chemistry/ jmol/xtalx>.
>>>
>>> Last week, during a visit to Cambridge I had the opportunity to   
>>> speak with Peter and Judith Murray-Rust, and they suggested we   
>>> implement a Hall symbol reader into Jmol.
>>>
>>> I have now done that and wonder if you could answer some  
>>> questions  I have about Hall naming. Do you have the time to work  
>>> with me a  bit on this? If so, here are a few questions for  
>>> starters, all in  relation to <http://cci.lbl.gov/sginfo/ 
>>> hall_symbols.html>:
>>>
>>> 1. Default axes.  The statement reads:
>>>
>>>  2. the second rotation (if N is 2) has an axis direction of
>>>         - a     if preceded by an N of 2 or 4
>>>         - *a+b* if preceded by an N of 3 or 6
>>>
>>> Should this read "a-b" rather than "a+b" in that second case? It   
>>> seems to me that what is intended is that the space group <P 3  
>>> 2>  is explicity <P 3z 2'> not <P 3z 2">, and 2' is a-b, not a+b.
>>>
>>> 2. In the discussion of Table 4: based on the included list of   
>>> space groups, which I presume to be complete, it would appear  
>>> that  it is not possible to have 2' or 2" when the preceding axis  
>>> is NOT  Nz. I wonder why there is the discussion there of Nx and  
>>> Ny in  relation to 2' and 2". Is that necessary?
>>> 3. I guess my main question relates to the general  
>>> implementation  of Hall symbols. Is it intended that there be  
>>> exactly one Hall  symbol for each possible space group  
>>> possibility? That is, are  there exactly 530 legitimate Hall  
>>> symbols? Or is it conceivable/ appropriate for people to invent  
>>> their own equivalent set of Hall  symbols for any given space group?
>>>
>>> Thanks for your time. I look forward to hearing from you.
>>>
>>> Bob Hanson
>>> Professor of Chemistry
>>> St. Olaf College
>>> http://www.stolaf.edu/people/hansonr
>>>
>>>
>>
>>
>
>

-------------------------------------------------------------------------
Using Tomcat but need to do more? Need to support web services, security?
Get stuff done quickly with pre-integrated technology to make your job easier
Download IBM WebSphere Application Server v.1.0.1 based on Apache Geronimo
http://sel.as-us.falkag.net/sel?cmd=lnk&kid=120709&bid=263057&dat=121642
_______________________________________________
Jmol-developers mailing list
[email protected]
https://lists.sourceforge.net/lists/listinfo/jmol-developers

Reply via email to