*Thank you, Rolf, for working on the .select() business. After taking a close look at it, I decided the select() function was getting too cryptic, and I agree that there were some inconsistencies there. What is given below is much simpler. This long email message summarizes the JmolSQL business, starting with Jmol 11.3.16_2015.09.28. See http://chemapps.stolaf.edu/ <http://chemapps.stolaf.edu/>*
*jmol/zip/jmol-14.3.16_2015.09.28.zip JmolSQLJmolSQL is a Jmol math syntax that is designed to query information related to molecular structure. The idea is that associative arrays, with key/value pairs, and especially arrays of associative arrays, are data, and those arrays themselves can be thought of as a mini database. These sorts of data can be found in Jmol in the a model's auxiliary info (variable _M), including validation data returned from LOAD =xxxx/val (_M.validation), sequence domain data returned from LOAD =xxxx/dom (_M.domains), and secondary structure information returned from LOAD =xxxx/dssr (_M.dssr) or LOAD=xxxx/rna3d (_M.rna3d). In addition, the getProperty() function returns a wide variety of data relating to model attributes, including getProperty("atomInfo") and getProperty("bondInfo") among several others. The original conception of JmolSQL was in the context of the getProperty() function -- for example:load $caffeineprint getProperty("atomInfo[SELECT atomno,coord WHERE shape LIKE 'trigonal planar']") { "atomno" : 1 "coord" : {1.312 -1.0479 0.0025} } { "atomno" : 3 "coord" : {1.7906001 0.20809999 9.999999E-4} } ...More recent development widens this use to any array data, and use of the .select() function rather than getProperty() is recommended for general use. Thus, alternatively we can use:print getProperty("atomInfo").* *select("atomno,coord WHERE shape LIKE 'trigonal planar' ")object.SELECT("keys WHERE/WHEREIN phrase")There are three parts to JmolSQL: object, keys, and an optional WHERE or WHEREIN phrase. The object can be either an associative array [key1:value1, key2:value2, key3:value3] or an array of associative arrays, usually all having the same set of keys.Associative ArraysWhen the top-level object is an associative array, .select() can be used to select out subsets of that array, either as a single associative array or as an array of values.abc.select("...")The simplest form of .select() returns a subset of abc. Wild cards can be interspersed with additional keys, for example, "a*,b" or "*_id". In each such case, the case-sensitive LIKE operation is used to match keys.abc = [ A:[b:1],B:[b:2],AA:[b:3, d:50] ]print abc.select("A").format("JSON"){ "A": { "b": 1 } }abc = [ A:[b:1],B:[b:2],AA:[b:3, d:50] ]print abc.select("A*").format("JSON"* *){ "A": { "b": 1 },"AA": { "b": 3,"d": 50 } }abc.select("(...)")Using parentheses around the list of keys delivers a list of values of b for only the the subset of xyz for which a=1:abc = [ A:[b:1],B:[b:2],AA:[b:3, d:50] ]print abc.select("(A,B)").format("* *JSON")[ { "b": 2 },{ "b": 1 } ]Arrays of Associative ArraysIn addition to operating on an associative array directly, JmolSQL can operate on an array of associative arrays. Generally we assume here that the elements of that array are associative arrays that all have the same set of keys. This is the essence of a database. Whether or not the associative arrays have the same keys is not important for Jmol. For example, the getProperty("atomInfo") returns an array giving the information for each atom that is loaded:* *load $caffeine* *x = getProperty("atomInfo")* *print x.count* *24print x[1]* *{ "_ipt" : 0 "atomIndex" : 0 "atomno" : 1 "bondCount" : 3 "clickabilityFlags" : 48 "colix" : -32761 "color" : "[x3050f8]" "coord" : {1.312 -1.0479 0.0025} "element" : "nitrogen" "elemno" : 7 "formalCharge" : 0 "info" : "N1 #1" "model" : "1" "partialCharge" : 0.0 "radius" : 0.7416667 "shape" : "trigonal planar" "spacefill" : 0.3565 "sym" : "N" "visibilityFlags" : 63 "visible" : true "x" : 1.312 "y" : -1.0479 "z" : 0.0025 }* *These data can be "queried" using JmolSQL.* *xyz.select("...")Creates the sublist of associative arrays having the selected subset of keys:xyz = [ [a:1,b:11],[a:2,b:22],[a:3,b:* *33] ]print xyz.select("b").format("JSON")[ { "b": 11 },{ "b": 22 },{ "b": 33 } ]print x.select("atomno,element") { "atomno" : 1 "element" : "nitrogen" } { "atomno" : 2 "element" : "carbon" } { "atomno" : 3 "element" : "carbon" } { "atomno" : 4 "element" : "oxygen" } ...xyz.select("(...)")Adding parentheses creates a list of only the values for the specified keys:xyz = [ [a:1,b:11],[a:2,b:22],[a:3,b:* *33] ]print xyz.select("(b)").format("* *JSON")[ 11,22,33 ]xyz = [ [a:1,b:11],[a:2,b:22],[a:3,b:* *33] ]print xyz.select("(a,b)").format("* *JSON")[ 11,1,22,2,33,3 ]* *load $caffeine* *print getProperty("atomInfo").* *select("(element)").pivot* *{ "carbon" : 8 "hydrogen" : 10 "nitrogen" : 4 "oxygen" : 2 }The assumption when using (keys) is that you want to know all these values, but you don't care what order they are in (because that will not be predictable) and you don't care about their exact context. An example is a list of bonds for which we just want to know all the atoms involved, but the atoms are listed under "atom1" and "atom2" in each bond array.load =1ehz/dssrselect on @{_M.dssr.hbonds.select("(* *atom1_id,atom2_id)")}206 atoms selectedUsing WHEREWHERE is used to select a subset of the elements of an array based on specifickey-value relationships.xyz.select("... WHERE ...")Delivers all key/value pairs in the subset of xyz element associative arrays for which the WHERE clause is true for that element. xyz = [ [a:1,b:11],[a:2,b:22],[a:3,b:* *33] ]print xyz.select("* where a<3 and b<20").format("JSON")[ { "b": 11,"a": 1 } ]load $caffeineprint getProperty("atomInfo").* *select("atomno,element WHERE shape LIKE 'trigonal planar' ").format("JSON")[ { "element": "nitrogen","atomno": 1 },{ "element": "carbon","atomno": 3 },{ "element": "nitrogen","atomno": 5 },{ "element": "carbon","atomno": 7 },{ "element": "carbon","atomno": 9 },{ "element": "nitrogen","atomno": 10 },{ "element": "carbon","atomno": 12 },{ "element": "carbon","atomno": 13 } ]xyz.select("(...) where ...")Using parentheses around the list of keys delivers a list of values for only the subset of xyz for which the WHERE clause is true:xyz = [ [a:1,b:11],[a:2,b:22],[a:3,b:* *33] ]print xyz.select("(b) where a>1").format("JSON")[ 22,33 ]load $caffeine print getProperty("atomInfo").* *select("(shape) WHERE shape").pivot{ "bent" : 1 "tetrahedral" : 3 "trigonal planar" : 8 }Note that "WHERE shape" here just excludes all cases where shape is the empty string, since empty strings in Jmol evaluate as FALSE. (In this case that involves hydrogen atoms.)For example, finding all the hydrogen bonds created by DSSR for a given residue:load =1ehz/dssrx = _M.dssr.hbonds.select("(* *distance) where res_long like '*|A|C|72|*'");print x.format("JSON")print format("%5.3f",x.average)[ 2.832,2.879,2.838 ] 2.850* *Array "Drilling"* *WHERE will "drill down" through arrays of arrays to find elements that are associative arrays, returning a flat array of those objects:xyz = [ [[a:1,b:11], [a:0,b:0]],[[[a:2,b:22]]],[[a:* *3,b:33,aa:44]] ]print xyz.select("a* where a>0").format("JSON")[ { "a": 1 },{ "a": 2 },{ "a": 3,"aa": 44 } ]xyz = [ [[a:1,b:11], [a:0,b:0]],[[[a:2,b:22]]],[[a:* *3,b:33,aa:44]] ]print xyz.select("(b) where a>0").format("JSON")[ 11,22,33 ] WHERE vs. WHEREINStarting with Jmol 14.4, JmolSQL includes an additional option, WHEREIN. This option allows selecting specific key/value pairs for which the value is itself an associative array, and *that array* has a specific set of key/value relationships. Thus, theclause is checked one level deeper in the structure.For example, given the associative arrayabc = [key_1:[type:"a", i:1],key_2:[type:"b", i:2],key_3:[type:"a", i:3]]we can select out only those keys for which type='a':abc = [key_1:[type:"a", i:1],key_2:[type:"b", i:2],key_3:[type:"a", i:3]]print abc.select("* WHEREIN type='a'").format("JSON");{ "key_3": { "i": 3,"type": "a" },"key_1": { "i": 1,"type": "a" } }All of the options that involve WHERE also apply to WHEREIN. For example,multiple keys can be specified, and keys can be surrounded by parentheses to return just the values instead of key/value pairs:abc = [key_1:[type:"a", i:1],key_2:[type:"b", i:2],key_3:[type:"a", i:3]]print abc.select("(key_1,key2) WHEREIN type='a'").format("JSON");[ { "i": 1,"type": "a" } ]In addition, WHEREIN can be applied to arrays as well as associative arrays. In this case, the WHEREIN phrase applies to the elements of that array, whichare assumed to be associative arrays. For example, we can get a list of justthe occupied orbitals produced by Gaussian that are of a given symmetry:load http://chemapps.stolaf.edu/jmol/jsmol/data/no2_nbo.log.gz <http://chemapps.stolaf.edu/jmol/jsmol/data/no2_nbo.log.gz> 2 filter "alpha"print _M.moData.select("mos wherein occupancy>0").select("(* *symmetry)").pivot{ "(A1)--O" : 6 "(A2)--O" : 1 "(B1)--O" : 1 "(B2)--O" : 4 }Note that this use of WHEREIN with arrays in this way can also be accomplished * *more directly with WHERE:* *load http://chemapps.stolaf.edu/jmol/jsmol/data/no2_nbo.log.gz <http://chemapps.stolaf.edu/jmol/jsmol/data/no2_nbo.log.gz> 2 filter "alpha"print _M.moData.mos.select("(* *symmetry) where occupancy>0").pivot{ "(A1)--O" : 6 "(A2)--O" : 1 "(B1)--O" : 1 "(B2)--O" : 4 }load http://chemapps.stolaf.edu/jmol/jsmol/data/no2_nbo.log.gz <http://chemapps.stolaf.edu/jmol/jsmol/data/no2_nbo.log.gz> 2 filter "alpha"x= _M.moData.select("mos wherein occupancy>0 and symmetry like '(B2)*' ")print x.select("(index)").format("* *JSON")[ 1,5,8,10 ]-------------------------------------------------------------------------------------------------------------Jmol.___JmolVersion="14.3.16_* *2015.09.28"load http://chemapps.stolaf.edu/jmol/jsmol/data/no2_nbo.log.gz <http://chemapps.stolaf.edu/jmol/jsmol/data/no2_nbo.log.gz> 2 filter "alpha"x= _M.moData.select("mos wherein occupancy>0 and symmetry like '(B2)*' ")print x.select("(index)").format("* *JSON")[ 1,5,8,10 ]* *new feature: array.sort("key") -- sorts an array of associative arrays by the specified associative array key. -- example: load sf6.smol x= _M.moData.mos.select("energy,* *index where energy<0") x.sort("energy").reverse print x { "energy" : -0.67001194 "index" : 35 } { "energy" : -0.67001194 "index" : 34 } { "energy" : -0.67001194 "index" : 33 } { "energy" : -0.70143324 "index" : 32 } ... new feature: JmolSQL xxxx.select("<keys> WHEREIN <clause>") -- replaces ** idea -- assumes values of xxxx are themselves associative arrays -- indicates that the clause should be applied only to the values for the selected keys -- returns an associative array that holds only those keys for which the clause is true *for them* -- works also for array xxxx where each element of xxxx is an associative array, in which case it returns a subarray of xxxx involving the matching values. -- example: abc = [ A:[b:1], B:[b:2], C:[b:3, d:50], AA:[b:4] ] print abc.select("A* wherein b>2").format("JSON") { "AA": { "b": 4 } } Compare this to the following, where we are are checking for validity of abc itself: abc = [ A:[b:1], B:[b:2], C:[b:3, d:50], AA:[b:4] ] print abc.select("A* where B.b=2").format("JSON") { "A": { "b": 1 },"AA": { "b": 4 } } abc2 = [ [ A:[b:1], B:[b:2], C:[b:3, d:50], AA:[b:4] ], [ A:[b:11], B:[b:22], C:[b:33, d:5050], AA:[b:40] ] ] print abc2.select("A* wherein b>2").format("JSON") [ { "AA": { "b": 4 } },{ "A": { "b": 11 },"AA": { "b": 40 } } ] new feature: JmolSQL xxxx.select("(<keys>) WHERE/WHEREIN <clause>") -- parentheses around keys replaces ";" idea -- indicates to return an array of values rather than a key/value pair -- works also for array xxxx where each element of xxxx is an array or associative array, in which case it returns an array of matching values, without keys. -- example: load =1ehz/dssr print _M.dssr.hbonds.select("* *distance where res_long like '*|C|72|*'") { "distance" : 2.832 } { "distance" : 2.879 } { "distance" : 2.838 } print _M.dssr.hbonds.select("(* *distance) where res_long like '*|C|72|*'") 2.832 2.879 2.838 print _M.dssr.hbonds.select("(* *distance) where res_long like '*|C|72|*'").average 2.8496666 *
------------------------------------------------------------------------------
_______________________________________________ Jmol-users mailing list Jmol-users@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/jmol-users