This is what I get from Matlab R2013a

>> A

A =

     1     1     0     0     0
     1     1     0     0     0
     1     1     0     0     0
     1     1     0     0     0
     1     1     0     0     0
     1     0     1     0     0
     1     0     1     0     0
     1     0     1     0     0
     1     0     1     0     0
     1     0     1     0     0
     1     0     0     1     0
     1     0     0     1     0
     1     0     0     1     0
     1     0     0     1     0
     1     0     0     1     0
     1     0     0     0     1
     1     0     0     0     1
     1     0     0     0     1
     1     0     0     0     1
     1     0     0     0     1

>> orth(A)

ans =

   -0.2236    0.1060    0.3725   -0.0000
   -0.2236    0.1060    0.3725   -0.0000
   -0.2236    0.1060    0.3725   -0.0000
   -0.2236    0.1060    0.3725   -0.0000
   -0.2236    0.1060    0.3725   -0.0000
   -0.2236   -0.3495   -0.0348   -0.1633
   -0.2236   -0.3495   -0.0348   -0.1633
   -0.2236   -0.3495   -0.0348   -0.1633
   -0.2236   -0.3495   -0.0348   -0.1633
   -0.2236   -0.3495   -0.0348   -0.1633
   -0.2236   -0.0143   -0.1302    0.3645
   -0.2236   -0.0143   -0.1302    0.3645
   -0.2236   -0.0143   -0.1302    0.3645
   -0.2236   -0.0143   -0.1302    0.3645
   -0.2236   -0.0143   -0.1302    0.3645
   -0.2236    0.2577   -0.2076   -0.2012
   -0.2236    0.2577   -0.2076   -0.2012
   -0.2236    0.2577   -0.2076   -0.2012
   -0.2236    0.2577   -0.2076   -0.2012
   -0.2236    0.2577   -0.2076   -0.2012

On Wednesday, April 2, 2014 5:22:34 PM UTC+2, Douglas Bates wrote:
>
> On Tuesday, April 1, 2014 10:44:03 PM UTC-5, Gustavo Lacerda wrote:
>>
>> yes, I think that would be useful. 
>>
>
> Do you know what Matlab's orth function returns for a rank deficient 
> matrix?  Suppose you ask for an orthogonal basis of the column space of a 
> matrix like
>
> julia> hcat(fill(1.,(20,)), eye(4)[iceil([1:20] ./ 5),:])
> 20x5 Array{Float64,2}:
>  1.0  1.0  0.0  0.0  0.0
>  1.0  1.0  0.0  0.0  0.0
>  1.0  1.0  0.0  0.0  0.0
>  1.0  1.0  0.0  0.0  0.0
>  1.0  1.0  0.0  0.0  0.0
>  1.0  0.0  1.0  0.0  0.0
>  1.0  0.0  1.0  0.0  0.0
>  1.0  0.0  1.0  0.0  0.0
>  1.0  0.0  1.0  0.0  0.0
>  1.0  0.0  1.0  0.0  0.0
>  1.0  0.0  0.0  1.0  0.0
>  1.0  0.0  0.0  1.0  0.0
>  1.0  0.0  0.0  1.0  0.0
>  1.0  0.0  0.0  1.0  0.0
>  1.0  0.0  0.0  1.0  0.0
>  1.0  0.0  0.0  0.0  1.0
>  1.0  0.0  0.0  0.0  1.0
>  1.0  0.0  0.0  0.0  1.0
>  1.0  0.0  0.0  0.0  1.0
>  1.0  0.0  0.0  0.0  1.0
>
>
>  Do you get 4 or 5 columns?
>
> The simple calculation gives you 5 columns but there should only be 4 
> columns.
>

Reply via email to