Thx, OK, its work. It is eigenvaluse of first array : [x[1] for x in P][1]
But ?: julia> [x[i] for x in P][i]=pmap(eig,M) ERROR: i not defined in anonymous at no file this no wor. How automaticly preapre m1,v1; m2,v2; m3,v3 lik in typical [m,v] = eig(R) Paul W dniu niedziela, 1 czerwca 2014 17:03:58 UTC+2 użytkownik Andreas Noack Jensen napisał: > > You can use a complehensen. To get a vector of the vectors of the > eigenvalues you could write [x[1] for x in P]. If you want to collect them > into a matrix, you could write hcat([x[1] for x in P]...) > > > 2014-06-01 16:56 GMT+02:00 paul analyst <[email protected] <javascript:>> > : > >> julia> M = {cor(rand(4,4)) for i=1:2} >> 2-element Array{Any,1}: >> 4x4 Array{Float64,2}: >> 1.0 -0.227554 0.507924 -0.800516 >> -0.227554 1.0 0.220113 0.75924 >> 0.507924 0.220113 1.0 -0.272765 >> -0.800516 0.75924 -0.272765 1.0 >> 4x4 Array{Float64,2}: >> 1.0 -0.65399 -0.619397 -0.132602 >> -0.65399 1.0 -0.188752 0.818691 >> -0.619397 -0.188752 1.0 -0.680177 >> -0.132602 0.818691 -0.680177 1.0 >> >> julia> P=pmap(eig,M) >> >> 2-element Array{Any,1}: >> ([-2.08888e-16,0.340329,1.3362,2.32347], >> 4x4 Array{Float64,2}: >> 0.445323 0.628389 -0.283962 -0.571121 >> -0.485061 0.445037 -0.623672 0.421533 >> 0.08456 -0.637878 -0.711606 -0.282095 >> 0.747832 -0.0134082 -0.15497 0.645409) >> ([1.77636e-15,0.0237017,1.77733,2.19897], >> 4x4 Array{Float64,2}: >> 0.670874 -0.0224424 0.702664 -0.235982 >> 0.513147 0.521253 -0.261832 0.629618 >> 0.534381 -0.427716 -0.640692 -0.347864 >> 0.0323244 -0.73814 0.164988 0.653364) >> >> julia> P[1] >> ([-2.08888e-16,0.340329,1.3362,2.32347], >> 4x4 Array{Float64,2}: >> 0.445323 0.628389 -0.283962 -0.571121 >> -0.485061 0.445037 -0.623672 0.421533 >> 0.08456 -0.637878 -0.711606 -0.282095 >> 0.747832 -0.0134082 -0.15497 0.645409) >> >> julia> P[2] >> ([1.77636e-15,0.0237017,1.77733,2.19897], >> 4x4 Array{Float64,2}: >> 0.670874 -0.0224424 0.702664 -0.235982 >> 0.513147 0.521253 -0.261832 0.629618 >> 0.534381 -0.427716 -0.640692 -0.347864 >> 0.0323244 -0.73814 0.164988 0.653364) >> >> How can you separate results, eigenvalues and eigenvectors? >> The first and subsequent lines array P [1] and P [2] >> >> > > > -- > Med venlig hilsen > > Andreas Noack Jensen >
