Thanks Kevin,

That solved the problem!

I used 'condo install mpmath’ in addition to ‘pip install mpmath’, just to make 
sure (shows I am way too rusty on Python stuff), and then reinstalled both 
SymPy and Julia.

Thanks a lot, will certainly track Julia development!

Regards,
Rob

> On May 16, 2016, at 08:19, Kevin Squire <[email protected]> wrote:
> 
> Hi Rob,
> 
> You'll need to install the `mpmath` package for python.  
> 
> If you use `pip`, you should just be able to run `pip install mpmath`.  
> 
> Otherwise, you'll have to find and install the package using your preferred 
> method.
> 
> (I also ran into this.  John, you should probably mention this in the README.)
> 
> Cheers,
>    Kevin
> 
> On Mon, May 16, 2016 at 8:14 AM, Rob J. Goedman <[email protected] 
> <mailto:[email protected]>> wrote:
> Hi,
> 
> As I use Mathematica quite a bit, I’m very interested in SJulia!
> 
> I’m wondering if I need an additional Module or library to get around below 
> issue. This is on OS X and Julia 0.5-
> 
> ERROR: InitError: PyError (:PyImport_ImportModule) <type 
> 'exceptions.ImportError'>
> ImportError('No module named mpmath',)
> 
>  [inlined code] from /Users/rob/.julia/v0.5/PyCall/src/exception.jl:56
>  in pyimport(::String) at /Users/rob/.julia/v0.5/PyCall/src/PyCall.jl:285
>  [inlined code] from /Users/rob/.julia/v0.5/SJulia/src/SJulia.jl:3
>  in import_sympy() at /Users/rob/.julia/v0.5/SJulia/src/sympy.jl:23
>  in init_sympy() at /Users/rob/.julia/v0.5/SJulia/src/sympy.jl:677
>  in __init__() at /Users/rob/.julia/v0.5/SJulia/src/SJulia.jl:64
>  in _require_from_serialized(::Int64, ::Symbol, ::String, ::Bool) at 
> ./loading.jl:174
>  in require(::Symbol) at ./loading.jl:365
>  in eval(::Module, ::Any) at ./boot.jl:226
> during initialization of module Julia
> 
> On Julia 4.0 SymPy won’t work on my system (it complains about precompiling):
> 
> julia> using SymPy
> INFO: Precompiling module SymPy...
> ERROR: LoadError: LoadError: UndefVarError: _apply_recipe not defined
> 
> But on Julia 5.0:
> 
> 
> julia> using SymPy
> 
> x = symbols("x")
> x
> 
> julia> a = [x 1; 1 x]
> 2×2 Array{SymPy.Sym,2}
> ⎡x  1⎤
> ⎢    ⎥
> ⎣1  x⎦
> 
> julia> det(a)
>   ⎛    1⎞
> x⋅⎜x - ─⎟
>   ⎝    x⎠
> 
> julia> versioninfo
> versioninfo (generic function with 4 methods)
> 
> julia> versioninfo()
> Julia Version 0.5.0-dev+4110
> Commit 5d52f02 (2016-05-16 02:25 UTC)
> Platform Info:
>   System: Darwin (x86_64-apple-darwin15.5.0)
>   CPU: Intel(R) Core(TM) i7-4980HQ CPU @ 2.80GHz
>   WORD_SIZE: 64
>   BLAS: libopenblas (USE64BITINT DYNAMIC_ARCH NO_AFFINITY Haswell)
>   LAPACK: libopenblas64_
>   LIBM: libopenlibm
>   LLVM: libLLVM-3.7.1 (ORCJIT, haswell)
> 
>> On May 12, 2016, at 19:47, [email protected] 
>> <mailto:[email protected]> wrote:
>> 
>> The symbolic mathematics language project that I announced last year has 
>> been greatly expanded.
>> 
>> Here is the link: https://github.com/jlapeyre/SJulia.jl 
>> <https://github.com/jlapeyre/SJulia.jl>
>> 
>> The best way to find what is new is to look at the tests 
>> https://github.com/jlapeyre/SJulia.jl/tree/master/sjtest 
>> <https://github.com/jlapeyre/SJulia.jl/tree/master/sjtest>
> 
> 

Reply via email to