Hello. I am working with a pentadiagonal sparse matrix that represents a 2D Schrodinger's time-independent equation. I first work the laplacian expressed in Finite Differences form and then I apply the potential on the same matrix.
So far I've been able to validate my results for both an electron in a box as well as a harmonic oscillator, but when I change to the following potential of a dipole, Julia pretty much quits on me when I try to obtain the eigenvalues and eigenvectors: O = [round(L/2)-hx round(L/2)-hy]# --el ORIGEN (centro -- x,y) del potencial. Eps_o = 8.854187817e10-12# --F*m^-1 C = 1/(4*pi*Eps_o) D = 1e-21#C*m^2/s# --Debyes) pe = 1.8*D *P(X,Y) = -(C)*pe*(Y/X)*(1/( (X)^2 + (Y)^2 ) )*# --How the potential gets described. #--I'm aware there's singularities in the potential. #--and here's how I apply the potential to my sparse matrix. Vi = Float64[]# --container for the potential. for j=Y for i=X push!(Vi,P(i,j)) end end@ --applying the potential. I use this command: *l, v = eigs(M,nev=15,which = :SM ,ritzvec=true)* My problem seems to be that there's an error that I can't get past: ERROR: LoadError: ArgumentError: matrix has one or more zero pivots >> >> in #ldltfact!#10(::Float64, ::Function, >>> ::Base.SparseArrays.CHOLMOD.Factor{Float64}, >>> ::Base.SparseArrays.CHOLMOD.Sparse{Float64}) at ./sparse/cholmod.jl:1350 >> >> in (::Base.LinAlg.#kw##ldltfact!)(::Array{Any,1}, >>> ::Base.LinAlg.#ldltfact!, ::Base.SparseArrays.CHOLMOD.Factor{Float64}, >>> ::Base.SparseArrays.CHOLMOD.Sparse{Float64}) at ./<missing>:0 >> >> in #ldltfact#12(::Float64, ::Array{Int64,1}, ::Function, >>> ::Base.SparseArrays.CHOLMOD.Sparse{Float64}) at ./sparse/cholmod.jl:1386 >> >> in #ldltfact#13(::Array{Any,1}, ::Function, >>> ::Hermitian{Float64,SparseMatrixCSC{Float64,Int64}}) at >>> ./sparse/cholmod.jl:1426 >> >> in factorize(::SparseMatrixCSC{Float64,Int64}) at ./sparse/linalg.jl:897 >> >> in #_eigs#62(::Int64, ::Int64, ::Symbol, ::Float64, ::Int64, ::Void, >>> ::Array{Float64,1}, ::Bool, ::Base.LinAlg.#_eigs, >>> ::SparseMatrixCSC{Float64,Int64}, ::UniformScaling{Int64}) at >>> ./linalg/arnoldi.jl:251 >> >> in (::Base.LinAlg.#kw##_eigs)(::Array{Any,1}, ::Base.LinAlg.#_eigs, >>> ::SparseMatrixCSC{Float64,Int64}, ::UniformScaling{Int64}) at ./<missing>:0 >> >> in #eigs#55(::Array{Any,1}, ::Function, >>> ::SparseMatrixCSC{Float64,Int64}, ::UniformScaling{Int64}) at >>> ./linalg/arnoldi.jl:78 >> >> in (::Base.LinAlg.#kw##eigs)(::Array{Any,1}, ::Base.LinAlg.#eigs, >>> ::SparseMatrixCSC{Float64,Int64}, ::UniformScaling{Int64}) at ./<missing>:0 >> >> in #eigs#54(::Array{Any,1}, ::Function, >>> ::SparseMatrixCSC{Float64,Int64}) at ./linalg/arnoldi.jl:77 >> >> in (::Base.LinAlg.#kw##eigs)(::Array{Any,1}, ::Base.LinAlg.#eigs, >>> ::SparseMatrixCSC{Float64,Int64}) at ./<missing>:0 >> >> in include_from_node1(::String) at ./loading.jl:488 >> >> while loading /home/alejandro/Desktop/ACAD/PROG/ACADEMIC_PROGRAMMING/FDM >>> (Finite_Difference_Method)/2D/SCHROD_DIP_2D/SCRATCH-2D-SI-DIPOLO2.jl, in >>> expression starting on line 106 >> >> >> My question is, is there a way to work around it, or, am I completely screwed? Thanks so much in advance.