https://bugs.kde.org/show_bug.cgi?id=508606

--- Comment #1 from [email protected] ---
Subject: Proposal for Implementing AI-Based Background Blur Tool in digiKam
Image Editor
Summary:
This feature request aims to add a new tool to the digiKam image editor that
allows users to select a foreground subject and apply a blur effect to the
background, simulating the depth-of-field effect found in modern smartphones
(e.g., iPhone 15 Portrait Mode). The proposed solution uses OpenCV's GrabCut
algorithm for segmentation and Gaussian blur for the background, leveraging
digiKam's existing rectangular selection tool and DImg/OpenCV integration
helpers.

1. Context and Goals
User Need:

Select a subject (person/object) in a photo.
Blur the background while keeping the subject sharp.
Use the existing rectangular selection tool in the editor for simplicity.

Technical Approach:

Use GrabCut (OpenCV) for foreground/background segmentation.
Apply Gaussian blur to the background.
Integrate with digiKam's DImg and QtOpenCVImg helpers for seamless conversion
between DImg and cv::Mat.


2. Technical Implementation Steps
A. Plugin Structure
Create the following files in digikam/editor/plugins/backgroundblur/:
backgroundblurplugin.h/cppMain plugin class (inherits from
DPluginEditor).backgroundblurtool.h/cppCore logic: GrabCut segmentation +
background blur.ui/backgroundblurwidget.uiUser interface (slider for blur
intensity, "Apply" button).CMakeLists.txtBuild configuration (link to OpenCV,
Qt).

B. Key Code Snippets
1. Retrieve Rectangular Selection and Convert DImg to cv::Mat:
// In backgroundblurtool.cpp
void BackgroundBlurTool::preparePreview(Digikam::ImageIface* iface, int
blurIntensity) {
    QRect selection = iface->selectionRect();
    Digikam::DImg original = iface->original();
    cv::Mat input = Digikam::QtOpenCVImg::image2Mat(original);

    cv::Mat output;
    applyBackgroundBlur(input, output, selection, blurIntensity);

    Digikam::DImg result = Digikam::QtOpenCVImg::mat2Image(output).toImage();
    iface->setImage(result);
}
2. Apply GrabCut and Background Blur:
void BackgroundBlurTool::applyBackgroundBlur(const cv::Mat& input, cv::Mat&
output, const QRect& selection, int blurIntensity) {
    cv::Rect roi(selection.x(), selection.y(), selection.width(),
selection.height());
    cv::Mat mask(input.rows, input.cols, CV_8UC1, cv::GC_PR_BGD);
    mask(roi) = cv::GC_PR_FGD;

    cv::Mat bgModel, fgModel;
    cv::grabCut(input, mask, roi, bgModel, fgModel, 5, cv::GC_INIT_WITH_RECT);
    cv::compare(mask, cv::GC_PR_FGD, mask, cv::CMP_EQ);

    cv::Mat blurred;
    cv::GaussianBlur(input, blurred, cv::Size(0, 0), blurIntensity);
    input.copyTo(output, mask);
    blurred.copyTo(output, ~mask);
}
3. User Interface (ui/backgroundblurwidget.ui):
<ui version="4.0">
  <class>BackgroundBlurWidget</class>
  <widget class="QWidget">
    <layout class="QVBoxLayout">
      <item><widget class="QLabel" text="Blur Intensity:"/></item>
      <item><widget class="QSlider" name="blurSlider" minimum="1" maximum="50"
value="15"/></item>
      <item><widget class="QPushButton" name="applyButton"
text="Apply"/></item>
    </layout>
  </widget>
</ui>
4. CMake Integration:
find_package(OpenCV REQUIRED)
find_package(Qt5 REQUIRED COMPONENTS Widgets)

add_library(backgroundblurplugin MODULE
  backgroundblurplugin.cpp
  backgroundblurtool.cpp
)

target_link_libraries(backgroundblurplugin
  Qt5::Widgets
  ${OpenCV_LIBS}
)

3. Expected Deliverables


Functional Plugin:

Integrates with digiKam's editor and selection tools.
Applies background blur using GrabCut + Gaussian blur.
Includes a user-friendly interface for adjusting blur intensity.



Code Quality:

Follows digiKam's coding standards.
Includes comments and documentation for key functions.
Handles edge cases (e.g., invalid selections, empty images).



Testing:

Test with various images (portraits, objects, complex backgrounds).
Verify performance with high-resolution images.
Ensure no crashes or visual artifacts.




4. Assignment Notes for Students/Contributors


Prerequisites:

Familiarity with C++, Qt, and OpenCV.
Basic understanding of digiKam's plugin architecture.
Access to a development environment with digiKam's build dependencies.



Resources:

OpenCV GrabCut Documentation
digiKam Developer Guide
QtOpenCVImg Helpers



Mentorship:

Assign a mentor from the digiKam team to review progress and provide guidance.
Encourage incremental commits and code reviews via digiKam's Phabricator.




5. Timeline (Suggested)
Set up development environment1–2 daysCreate plugin skeleton and UI2–3
daysImplement GrabCut + blur logic3–5 daysIntegrate with digiKam editor2–3
daysTesting and bug fixing2–3 daysDocumentation and final review1–2 days

Next Steps:

Assign this task to a student/contributor.
Provide access to the digiKam repository and relevant documentation.
Schedule regular check-ins to monitor progress.


Note: This feature is a great opportunity for students to contribute to a
widely used open-source project while learning about image processing, Qt, and
OpenCV. The digiKam team is available to support and guide contributors
throughout the process.

-- 
You are receiving this mail because:
You are watching all bug changes.

Reply via email to