This is related to my other post, but as I see them as different (maybe not?) 
problems, I will post a second thread.

The situation is, again, a graphene strip with periodic boundary conditions in 
one direction and open boundaries in the other. 

Using the sparse solver from linalg, I have solved for energies and gotten 
reasonable results for the energies, except for the case when the length (along 
the axis of the open boundary condition) is metallic. Attached is a code that 
shows it for length = 17, which is a metallic length for graphene (has energies 
at zero), but it does not produce messy energy calculation for when it is not a 
metallic length, i.e. something like length = 16.

"""
Graphene wire with periodic boundary conditions in the vertical direction. 
"""


import kwant
from math import pi, sqrt, tanh, cos, ceil, floor, atan, acos, asin
from cmath import exp
import numpy as np
import scipy
import scipy.linalg as lina


sin_30, cos_30, tan_30 = (1 / 2, sqrt(3) / 2, 1 / sqrt(3))

def create_closed_system(length,
                  width, lattice_spacing, 
                  onsite_potential, 
                  hopping_parameter, boundary_hopping):
    
    padding = 0.5*lattice_spacing*tan_30
    
    def calc_total_length(length):
        total_length = length
        N = total_length//lattice_spacing # Number of times a graphene hexagon 
fits in horizontially fully
        new_length = N*lattice_spacing + lattice_spacing*0.5
        diff = total_length - new_length
        if diff != 0:
            length = length - diff
            total_length = new_length
        return total_length
    
    def calc_width(width,lattice_spacing, padding):
        stacking_width = lattice_spacing*((tan_30/2)+(1/(2*cos_30)))
        N = width//stacking_width
        if N % 2 == 0.0: # Making sure that N is odd.
            N = N-1
        new_width = N*stacking_width + padding
        width = new_width
        return width, int(N)
    
    def rectangle(pos):
        x,y = pos
        if (0 < x <= total_length) and (-padding <= y <= width -padding):
            return True
        return False
    
    
    def lead_shape(pos):
        x, y = pos
        return 0 - padding <= y <= width
                
    def tag_site_calc(x):
        return int(-1*(x*0.5+0.5))
    
    #Initation of geometrical limits of the lattice of the system
    total_length = calc_total_length(length)
    width, N = calc_width(width, lattice_spacing, padding)
    
    
    
    # The definition of the potential over the entire system
    def potential_e(site,pot):
        return pot
                                                                                
       
                                                                                
                       
    ### Definig the lattices ###

    graphene_e = kwant.lattice.honeycomb(a=lattice_spacing,name='e')
    a, b = graphene_e.sublattices
    
    sys = kwant.Builder()
    
    # The following functions are required for input in the 
    def onsite_shift_e(site, pot):
        return potential_e(site,pot)
    
    sys[graphene_e.shape(rectangle, (0.5*lattice_spacing, 0))] = onsite_shift_e
    sys[graphene_e.neighbors()] = -hopping_parameter

    ### Boundary conditions for scattering region ###
    for site in sys.sites():
        (x,y) = site.tag
        if float(site.pos[1]) < 0:
            if str(site.family) == "<Monatomic lattice e1>":
                sys[b(x,y),a(int(x+tag_site_calc(N)),N)] = -boundary_hopping

    kwant.plot(sys)
        

    return sys
                                                                                
                      

def eigen_vectors_and_values(sys,sparse_dense,k): #sparse = 0, dense = 1
    if sparse_dense == 0:
        ham_mat = sys.hamiltonian_submatrix(params=dict(pot=0.0), sparse=True)
        eigen_val, eigen_vec = scipy.sparse.linalg.eigsh(ham_mat.tocsc(), k=k, 
sigma=0,
                        return_eigenvectors=True)
    if sparse_dense == 1:
        ham_mat = sys.hamiltonian_submatrix(params=dict(pot=0.0), sparse=False)
        eigen_val, eigen_vec = lina.eigh(ham_mat)

    #sort the ee and ev in ascending order
    idx = eigen_val.argsort()  
    eigen_val= eigen_val[idx]
    eigen_vec = eigen_vec[:,idx]

    if sparse_dense == 1:
        eigen_val = eigen_val[int(len(eigen_val)*0.5-k*0.5):] # Remove first 
part
        eigen_val = eigen_val[:k] # Take first k-values
        eigen_vec = eigen_vec[:,int(len(eigen_val)*0.5-k*0.5):]
        eigen_vec = eigen_vec[:,:k]

 
    return eigen_vec, eigen_val
                      
def main():

    sys = create_closed_system(length = 17.0,
                      width = 20.0, lattice_spacing = 1.0, 
                      onsite_potential = 0.0, 
                      hopping_parameter = 1.0, boundary_hopping = 1.0)

    
    
    sys = sys.finalized()
    
    #sparse = 0, dense = 1
    eigen_vec, eigen_val = eigen_vectors_and_values(sys,sparse_dense=0,k=50)
    eigen_vec2, eigen_val2 = eigen_vectors_and_values(sys,sparse_dense=1,k=50)

    print("Eigenenergy difference (between sparse and dense): ")
    for i_ in range(len(eigen_val)):
        print(eigen_val[i_] - eigen_val2[i_] )


    
    return

if __name__ == "__main__":
    main()

Reply via email to