Zbigniew Romanowski writes: > Hi Roy, > > Thank you for your fast response. > I am particularly interested in positive definite operators > \nabla^2 + U(x) > corresponding to reals eigenvalues. Do the bug appear also for this type > of equation? > > As far as I know, for efficient adaptive procedure the estimation of the > eigenvalue error is crucial. Could you please provide the documentation > about the eigenvalue error estimators implemented in libMesh for > ordinary and generalized eigenvalue problem? This would be very helpful.
The library doesn't provide eigenvalue error estimators per se, only explicit a posteriori type indicators for FE solutions. If I understand correctly, error estimation for eigen-problems is a topic of current research interest and we would welcome any contributions to the library in this area. -J > > Best regards, > Zbigniew > > ---------------------------------------------------- > PATTON & FENNESZ. Kolejny projekt Mikea Pattona > - wokalisty Faith No More 29.02 20:00 Proxima /Warszawa > bilety: Ticketonline, Ticketpro, Shortcut, Eventim, Proxima > wwW.go-ahead.pl > http://klik.wp.pl/?adr=http%3A%2F%2Fcorto.www.wp.pl%2Fas%2Fpatton.html&sid=238 > > > > ------------------------------------------------------------------------- > This SF.net email is sponsored by: Microsoft > Defy all challenges. Microsoft(R) Visual Studio 2008. > http://clk.atdmt.com/MRT/go/vse0120000070mrt/direct/01/ > _______________________________________________ > Libmesh-users mailing list > [email protected] > https://lists.sourceforge.net/lists/listinfo/libmesh-users ------------------------------------------------------------------------- This SF.net email is sponsored by: Microsoft Defy all challenges. Microsoft(R) Visual Studio 2008. http://clk.atdmt.com/MRT/go/vse0120000070mrt/direct/01/ _______________________________________________ Libmesh-users mailing list [email protected] https://lists.sourceforge.net/lists/listinfo/libmesh-users
