Hello everyone, I want to solve the Euler cantilever beam equation using reduced basis to understand the RB method. However, I don't know how to deal with a 2nd derivative term of a weak form of the Euler beam equation. First, I created a 1D mesh. Then, refferring to the RB examples, I made a basic RB code. After that, I tried to use "SECOND" variable and "d2phi" in the RB code, but I can't solve it. The error message is as follows. ================================================================================= *************************************************************** * Running App run_Beam_Euler-opt *************************************************************** ./run_Beam_Euler-opt 2>&1 | tee output.txt Mesh Information: elem_dimensions()={1} spatial_dimension()=2 n_nodes()=15 n_local_nodes()=15 n_elem()=7 n_local_elem()=7 n_active_elem()=7 n_subdomains()=1 n_partitions()=1 n_processors()=1 n_threads()=1 processor_id()=0
EquationSystems n_systems()=1 System #0, "RBElasticity" Type "RBConstruction" Variables="u" Finite Element Types="LAGRANGE" Approximation Orders="SECOND" n_dofs()=15 n_local_dofs()=15 n_constrained_dofs()=1 n_local_constrained_dofs()=1 n_vectors()=1 n_matrices()=1 DofMap Sparsity Average On-Processor Bandwidth <= 3.8 Average Off-Processor Bandwidth <= 0 Maximum On-Processor Bandwidth <= 5 Maximum Off-Processor Bandwidth <= 0 DofMap Constraints Number of DoF Constraints = 1 Average DoF Constraint Length= 0 Initializing training parameters with random training set... Parameter length: log scaling = 0 Parameter load: log scaling = 0 Parameter point_load: log scaling = 0 RBConstruction parameters: system name: RBElasticity Nmax: 20 Greedy relative error tolerance: 0.001 Greedy absolute error tolerance: 1e-12 Do we normalize RB error bound in greedy? 0 Aq operators attached: 1 Fq functions attached: 1 n_outputs: 0 Number of parameters: 3 Parameter length: Min = 1, Max = 20 Parameter load: Min = -5, Max = 5 Parameter point_load: Min = -5, Max = 5 n_training_samples: 1000 quiet mode? 1 Assembling inner product matrix *** Warning, This code is untested, experimental, or likely to see future API changes: src/systems/dg_fem_context.C, line 35, compiled Aug 25 2017 at 02:20:14 *** Assembling affine operator 1 of 1 Assembling affine vector 1 of 1 Convergence error. Error id: -11 Stack frames: 8 0: libMesh::print_trace(std::ostream&) 1: libMesh::MacroFunctions::report_error(char const*, int, char const*, char const*) 2: libMesh::RBConstruction::check_convergence(libMesh::LinearSolver<double>&) 3: libMesh::RBConstruction::compute_Fq_representor_innerprods(bool) 4: libMesh::RBConstruction::train_reduced_basis(bool) 5: ./run_Beam_Euler-opt() [0x416482] 6: __libc_start_main 7: ./run_Beam_Euler-opt() [0x416ed9] [0] src/reduced_basis/rb_construction.C, line 2124, compiled Aug 25 2017 at 02:17:58 application called MPI_Abort(MPI_COMM_WORLD, 1) - process 0 [unset]: aborting job: application called MPI_Abort(MPI_COMM_WORLD, 1) - process 0 ================================================================================= I wonder if this is right way. If not, I want to know another way to solve the Euler cantilever beam equation. Best regards, S. Kang. ------------------------------------------------------------------------------ Check out the vibrant tech community on one of the world's most engaging tech sites, Slashdot.org! http://sdm.link/slashdot _______________________________________________ Libmesh-users mailing list Libmesh-users@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/libmesh-users