(cross-posting mempool issues identified are exposing lightning chan to loss of
funds risks, other
multi-party bitcoin apps might be affected)
Hi,
End of last year (December 2022), amid technical discussions on eltoo payment
channels and
incentives compatibility of the mempool anti-DoS rules, a new transaction-relay
jamming attack
affecting lightning channels was discovered.
After careful analysis, it turns out this attack is practical and immediately
exposed lightning
routing hops carrying HTLC traffic to loss of funds security risks, both legacy
and anchor output
channels. A potential exploitation plausibly happening even without network
mempools congestion.
Mitigations have been designed, implemented and deployed by all major lightning
implementations
during the last months.
Please find attached the release numbers, where the mitigations should be
present:
- LDK: v0.0.118 - CVE-2023 -40231
- Eclair: v0.9.0 - CVE-2023-40232
- LND: v.0.17.0-beta - CVE-2023-40233
- Core-Lightning: v.23.08.01 - CVE-2023-40234
While neither replacement cycling attacks have been observed or reported in the
wild since the last
~10 months or experimented in real-world conditions on bitcoin mainet,
functional test is available
exercising the affected lightning channel against bitcoin core mempool (26.0
release cycle).
It is understood that a simple replacement cycling attack does not demand
privileged capabilities
from an attacker (e.g no low-hashrate power) and only access to basic bitcoin
and lightning
software. Yet I still think executing such an attack successfully requests a
fair amount of bitcoin
technical know-how and decent preparation.
From my understanding of those issues, it is yet to be determined if the
mitigations deployed are
robust enough in face of advanced replacement cycling attackers, especially
ones able to combine
different classes of transaction-relay jamming such as pinnings or vetted with
more privileged
capabilities.
Please find a list of potential affected bitcoin applications in this full
disclosure report using
bitcoin script timelocks or multi-party transactions, albeit no immediate
security risk exposure as
severe as the ones affecting lightning has been identified. Only cursory review
of non-lightning
applications has been conducted so far.
There is a paper published summarizing replacement cycling attacks on the
lightning network:
https://github.com/ariard/mempool-research/blob/2023-10-replacement-paper/replacement-cycling.pdf
<https://github.com/ariard/mempool-research/blob/2023-10-replacement-paper/replacement-cycling.pdf>
## Problem
A lightning node allows HTLCs forwarding (in bolt3's parlance accepted HTLC on
incoming link and
offered HTLC on outgoing link) should settle the outgoing state with either a
success or timeout
before the incoming state timelock becomes final and an asymmetric defavorable
settlement might
happen (cf "Flood & Loot: A Systematic Attack on The Lightning Network" section
2.3 for a classical
exposition of this lightning security property).
Failure to satisfy this settlement requirement exposes a forwarding hop to a
loss of fund risk where
the offered HTLC is spent by the outgoing link counterparty's HTLC-preimage and
the accepted HTLC is
spent by the incoming link counterparty's HTLC-timeout.
The specification mandates the incoming HTLC expiration timelock to be spaced
out by an interval of
`cltv_expiry_delta` from the outgoing HTLC expiration timelock, this exact
interval value being an
implementation and node policy setting. As a minimal value, the specification
recommends 34 blocks
of interval. If the timelock expiration I of the inbound HTLC is equal to 100
from chain tip, the
timelock expiration O of the outbound HTLC must be equal to 66 blocks from
chain tip, giving a
reasonable buffer of reaction to the lightning forwarding node.
In the lack of cooperative off-chain settlement of the HTLC on the outgoing
link negotiated with the
counterparty (either `update_fulfill_htlc` or `update_fail_htlc`) when O is
reached, the lightning
node should broadcast its commitment transaction. Once the commitment is
confirmed (if anchor and
the 1 CSV encumbrance is present), the lightning node broadcasts and confirms
its HTLC-timeout
before I height is reached.
Here enter a replacement cycling attack. A malicious channel counterparty can
broadcast its
HTLC-preimage transaction with a higher absolute fee and higher feerate than
the honest HTLC-timeout
of the victim lightning node and triggers a replacement. Both for legacy and
anchor output channels,
a HTLC-preimage on a counterparty commitment transaction is malleable, i.e
additional inputs or
outputs can be added. The HTLC-preimage spends an unconfirmed and unrelated to
the channel parent
transaction M and conflicts its child.
As the HTLC-preimage spends an unconfirmed input that was already included in
the unconfirmed and
unrelated child transaction (rule 2), pays an absolute higher fee of at least
the sum paid by the
HTLC-timeout and child transaction (rule 3) and the HTLC-preimage feerate is
greater than all
directly conflicting transactions (rule 6), the replacement is accepted. The
honest HTLC-timeout is
evicted out of the mempool.
In an ulterior move, the malicious counterparty can replace the parent
transaction itself with
another candidate N satisfying the replacement rules, triggering the eviction
of the malicious
HTLC-preimage from the mempool as it was a child of the parent T.
There is no spending candidate of the offered HTLC output for the current block
laying in network
mempools.
This replacement cycling tricks can be repeated for each rebroadcast attempt of
the HTLC-timeout by
the honest lightning node until expiration of the inbound HTLC timelock I. Once
this height is
reached a HTLC-timeout is broadcast by the counterparty's on the incoming link
in collusion with the
one on the outgoing link broadcasting its own HTLC-preimage.
The honest Lightning node has been "double-spent" in its HTLC forwarding.
As a notable factor impacting the success of the attack, a lightning node's
honest HTLC-timeout
might be included in the block template of the miner winning the block race and
therefore realizes a
spent of the offered output. In practice, a replacement cycling attack might
over-connect to miners'
mempools and public reachable nodes to succeed in a fast eviction of the
HTLC-timeout by its
HTLC-preimage. As this latter transaction can come with a better
ancestor-score, it should be picked
up on the flight by economically competitive miners.
A functional test exercising a simple replacement cycling of a HTLC transaction
on bitcoin core
mempool is available:
https://github.com/ariard/bitcoin/commits/2023-test-mempool
<https://github.com/ariard/bitcoin/commits/2023-test-mempool>
## Deployed LN mitigations
Aggressive rebroadcasting: As the replacement cycling attacker benefits from
the HTLC-timeout being
usually broadcast by lightning nodes only once every block, or less the
replacement cycling
malicious transactions paid only equal the sum of the absolute fees paid by the
HTLC, adjusted with
the replacement penalty. Rebroadcasting randomly and multiple times before the
next block increases
the absolute fee cost for the attacker.
Implemented and deployed by Eclair, Core-Lightning, LND and LDK .
Local-mempool preimage monitoring: As the replacement cycling attacker in a
simple setup broadcast
the HTLC-preimage to all the network mempools, the honest lightning node is
able to catch on the
flight the unconfirmed HTLC-preimage, before its subsequent mempool
replacement. The preimage can be
extracted from the second-stage HTLC-preimage and used to fetch the off-chain
inbound HTLC with a
cooperative message or go on-chain with it to claim the accepted HTLC output.
Implemented and deployed by Eclair and LND.
CLTV Expiry Delta: With every jammed block comes an absolute fee cost paid by
the attacker, a risk
of the HTLC-preimage being detected or discovered by the honest lightning node,
or the HTLC-timeout
to slip in a winning block template. Bumping the default CLTV delta hardens the
odds of success of a
simple replacement cycling attack.
Default setting: Eclair 144, Core-Lightning 34, LND 80 and LDK 72.
## Affected Bitcoin Protocols and Applications
From my understanding the following list of Bitcoin protocols and
applications could be affected by
new denial-of-service vectors under some level of network mempools congestion.
Neither tests or
advanced review of specifications (when available) has been conducted for each
of them:
- on-chain DLCs
- coinjoins
- payjoins
- wallets with time-sensitive paths
- peerswap and submarine swaps
- batch payouts
- transaction "accelerators"
Inviting their developers, maintainers and operators to investigate how
replacement cycling attacks
might disrupt their in-mempool chain of transactions, or fee-bumping flows at
the shortest delay.
Simple flows and non-multi-party transactions should not be affected to the
best of my understanding.
## Open Problems: Package Malleability
Pinning attacks have been known for years as a practical vector to compromise
lightning channels
funds safety, under different scenarios (cf. current bip331's motivation
section). Mitigations at
the mempool level have been designed, discussed and are under implementation by
the community
(ancestor package relay + nverrsion=3 policy). Ideally, they should constraint
a pinning attacker to
always attach a high feerate package (commitment + CPFP) to replace the honest
package, or allow a
honest lightning node to overbid a malicious pinning package and get its
time-sensitive transaction
optimistically included in the chain.
Replacement cycling attack seem to offer a new way to neutralize the design
goals of package relay
and its companion nversion=3 policy, where an attacker package RBF a honest
package out of the
mempool to subsequently double-spend its own high-fee child with a transaction
unrelated to the
channel. As the remaining commitment transaction is pre-signed with a minimal
relay fee, it can be
evicted out of the mempool.
A functional test exercising a simple replacement cycling of a lightning
channel commitment
transaction on top of the nversion=3 code branch is available:
https://github.com/ariard/bitcoin/commits/2023-10-test-mempool-2
<https://github.com/ariard/bitcoin/commits/2023-10-test-mempool-2>
## Discovery
In 2018, the issue of static fees for pre-signed lightning transactions is made
more widely known,
the carve-out exemption in mempool rules to mitigate in-mempool package limits
pinning and the
anchor output pattern are proposed.
In 2019, bitcoin core 0.19 is released with carve-out support. Continued
discussion of the anchor
output pattern as a dynamic fee-bumping method.
In 2020, draft of anchor output submitted to the bolts. Initial finding of
economic pinning against
lightning commitment and second-stage HTLC transactions. Subsequent discussions
of a
preimage-overlay network or package-relay as mitigations. Public call made to
inquiry more on
potential other transaction-relay jamming attacks affecting lightning.
In 2021, initial work in bitcoin core 22.0 of package acceptance. Continued
discussion of the
pinning attacks and shortcomings of current mempool rules during community-wide
online workshops.
Later the year, in light of all issues for bitcoin second-layers, a proposal is
made about killing
the mempool.
In 2022, bip proposed for package relay and new proposed v3 policy design
proposed for a review and
implementation. Mempoolfullrbf is supported in bitcoin core 24.0 and conceptual
questions about
alignment of mempool rules w.r.t miners incentives are investigated.
Along this year 2022, eltoo lightning channels design are discussed,
implemented and reviewed. In
this context and after discussions on mempool anti-DoS rules, I discovered this
new replacement
cycling attack was affecting deployed lightning channels and immediately
reported the finding to
some bitcoin core developers and lightning maintainers.
## Timeline
- 2022-12-16: Report of the finding to Suhas Daftuar, Anthony Towns, Greg
Sanders and Gloria Zhao
- 2022-12-16: Report to LN maintainers: Rusty Russell, Bastien Teinturier, Matt
Corallo and Olaoluwa
Osuntunkun
- 2022-12-23: Sharing to Eugene Siegel (LND)
- 2022-12-24: Sharing to James O'Beirne and Antoine Poinsot (non-lightning
potential affected projects)
- 2022-01-14: Sharing to Gleb Naumenko (miners incentives and cross-layers
issuers) and initial
proposal of an early public disclosure
- 2022-01-19: Collection of analysis if other second-layers and multi-party
applications affected.
LN mitigations development starts.
- 2023-05-04: Sharing to Wilmer Paulino (LDK)
- 2023-06-20: LN mitigations implemented and progressively released. Week of
the 16 october proposed
for full disclosure.
- 2023-08-10: CVEs assigned by MITRE
- 2023-10-05: Pre-disclosure of LN CVEs numbers and replacement cycling attack
existence to
secur...@bitcoincore.org <mailto:secur...@bitcoincore.org>.
- 2023-10-16: Full disclosure of CVE-2023-40231 / CVE-2023-40232 /
CVE-2023-40233 / CVE-2023-40234
and replacement cycling attacks
## Conclusion
Despite the line of mitigations adopted and deployed by current major lightning
implementations, I
believe replacement cycling attacks are still practical for advanced attackers.
Beyond this new
attack might come as a way to partially or completely defeat some of the
pinning mitigations which
have been working for years as a community.
As of today, it is uncertain to me if lightning is not affected by a more
severe long-term package
malleability critical security issue under current consensus rules, and if any
other time-sensitive
multi-party protocol, designed or deployed isn't de facto affected too (loss of
funds or denial of
service).
Assuming analysis on package malleability is correct, it is unclear to me if it
can be corrected by
changes in replacement / eviction rules or mempool chain of transactions
processing strategy.
Inviting my technical peers and the bitcoin community to look more on this
issue, including to
dissent. I'll be the first one pleased if I'm fundamentally wrong on those
issues, or if any element
has not been weighted with the adequate technical accuracy it deserves.
Do not trust, verify. All mistakes and opinions are my own.
Antoine
"meet with Triumph and Disaster. And treat those two impostors just the same" -
K.
_______________________________________________
Lightning-dev mailing list
Lightning-dev@lists.linuxfoundation.org
https://lists.linuxfoundation.org/mailman/listinfo/lightning-dev