Add session  based HMAC  authentication plus parameter  decryption and
response encryption  using AES. The  basic design is to  segregate all
the nasty crypto, hash and hmac code into tpm2-sessions.c and export a
usable API.  The API first of all starts off by gaining a session with
tpm2_start_auth_session() which  initiates a session with  the TPM and
allocates  an  opaque  tpm2_auth   structure  to  handle  the  session
parameters.  The  design is that  session use will be  single threaded
from start to finish under the ops lock, so the tpm2_auth structure is
stored in struct tpm2_chip to simpify the externally visible API.

The session can be ended with tpm2_end_auth_session() which is
designed only to be used in error legs.  Ordinarily the further
session API (future patches) will end or continue the session
appropriately without having to call this.

Signed-off-by: James Bottomley <[email protected]>
Reviewed-by: Ard Biesheuvel <[email protected]> # crypto API parts

---

v6: split into new patch, update config variable
v7: add tpm2_ prefix and memzero_explicit
---
 drivers/char/tpm/Kconfig         |   3 +
 drivers/char/tpm/tpm-buf.c       |   1 +
 drivers/char/tpm/tpm-chip.c      |   3 +
 drivers/char/tpm/tpm2-sessions.c | 385 +++++++++++++++++++++++++++++++
 include/linux/tpm.h              |  34 +++
 5 files changed, 426 insertions(+)

diff --git a/drivers/char/tpm/Kconfig b/drivers/char/tpm/Kconfig
index e3c39a83171b..086cb8588493 100644
--- a/drivers/char/tpm/Kconfig
+++ b/drivers/char/tpm/Kconfig
@@ -30,6 +30,9 @@ if TCG_TPM
 config TCG_TPM2_HMAC
        bool "Use encrypted and HMACd transactions on the TPM bus"
        default y
+       select CRYPTO_ECDH
+       select CRYPTO_LIB_AESCFB
+       select CRYPTO_LIB_SHA256
        help
           Setting this causes us to deploy a scheme which uses request
          and response HMACs in addition to encryption for
diff --git a/drivers/char/tpm/tpm-buf.c b/drivers/char/tpm/tpm-buf.c
index bb81180495d1..274130398569 100644
--- a/drivers/char/tpm/tpm-buf.c
+++ b/drivers/char/tpm/tpm-buf.c
@@ -44,6 +44,7 @@ void tpm_buf_reset(struct tpm_buf *buf, u16 tag, u32 ordinal)
        head->tag = cpu_to_be16(tag);
        head->length = cpu_to_be32(sizeof(*head));
        head->ordinal = cpu_to_be32(ordinal);
+       buf->handles = 0;
 }
 EXPORT_SYMBOL_GPL(tpm_buf_reset);
 
diff --git a/drivers/char/tpm/tpm-chip.c b/drivers/char/tpm/tpm-chip.c
index 42b1062e33cd..d93937326b2e 100644
--- a/drivers/char/tpm/tpm-chip.c
+++ b/drivers/char/tpm/tpm-chip.c
@@ -275,6 +275,9 @@ static void tpm_dev_release(struct device *dev)
        kfree(chip->work_space.context_buf);
        kfree(chip->work_space.session_buf);
        kfree(chip->allocated_banks);
+#ifdef CONFIG_TCG_TPM2_HMAC
+       kfree(chip->auth);
+#endif
        kfree(chip);
 }
 
diff --git a/drivers/char/tpm/tpm2-sessions.c b/drivers/char/tpm/tpm2-sessions.c
index 9fc263ee02c2..c8792a6b8bd4 100644
--- a/drivers/char/tpm/tpm2-sessions.c
+++ b/drivers/char/tpm/tpm2-sessions.c
@@ -3,18 +3,399 @@
 /*
  * Copyright (C) 2018 [email protected]
  *
+ * Cryptographic helper routines for handling TPM2 sessions for
+ * authorization HMAC and request response encryption.
+ *
+ * The idea is to ensure that every TPM command is HMAC protected by a
+ * session, meaning in-flight tampering would be detected and in
+ * addition all sensitive inputs and responses should be encrypted.
+ *
+ * The basic way this works is to use a TPM feature called salted
+ * sessions where a random secret used in session construction is
+ * encrypted to the public part of a known TPM key.  The problem is we
+ * have no known keys, so initially a primary Elliptic Curve key is
+ * derived from the NULL seed (we use EC because most TPMs generate
+ * these keys much faster than RSA ones).  The curve used is NIST_P256
+ * because that's now mandated to be present in 'TCG TPM v2.0
+ * Provisioning Guidance'
+ *
+ * Threat problems: the initial TPM2_CreatePrimary is not (and cannot
+ * be) session protected, so a clever Man in the Middle could return a
+ * public key they control to this command and from there intercept
+ * and decode all subsequent session based transactions.  The kernel
+ * cannot mitigate this threat but, after boot, userspace can get
+ * proof this has not happened by asking the TPM to certify the NULL
+ * key.  This certification would chain back to the TPM Endorsement
+ * Certificate and prove the NULL seed primary had not been tampered
+ * with and thus all sessions must have been cryptographically secure.
+ * To assist with this, the initial NULL seed public key name is made
+ * available in a sysfs file.
+ *
+ * Use of these functions:
+ *
+ * The design is all the crypto, hash and hmac gunk is confined in this
+ * file and never needs to be seen even by the kernel internal user.  To
+ * the user there's an init function tpm2_sessions_init() that needs to
+ * be called once per TPM which generates the NULL seed primary key.
+ *
+ * These are the usage functions:
+ *
+ * tpm2_start_auth_session() which allocates the opaque auth structure
+ *     and gets a session from the TPM.  This must be called before
+ *     any of the following functions.  The session is protected by a
+ *     session_key which is derived from a random salt value
+ *     encrypted to the NULL seed.
+ * tpm2_end_auth_session() kills the session and frees the resources.
+ *     Under normal operation this function is done by
+ *     tpm_buf_check_hmac_response(), so this is only to be used on
+ *     error legs where the latter is not executed.
  */
 
 #include "tpm.h"
 
+#include <linux/random.h>
+#include <linux/scatterlist.h>
+
 #include <asm/unaligned.h>
 
 #include <crypto/aes.h>
+#include <crypto/kpp.h>
+#include <crypto/ecdh.h>
+#include <crypto/hash.h>
+#include <crypto/hmac.h>
 
 /* if you change to AES256, you only need change this */
 #define AES_KEYBYTES   AES_KEYSIZE_128
 
 #define AES_KEYBITS    (AES_KEYBYTES*8)
+#define AUTH_MAX_NAMES 3
+
+/*
+ * This is the structure that carries all the auth information (like
+ * session handle, nonces, session key and auth) from use to use it is
+ * designed to be opaque to anything outside.
+ */
+struct tpm2_auth {
+       u32 handle;
+       /*
+        * This has two meanings: before tpm_buf_fill_hmac_session()
+        * it marks the offset in the buffer of the start of the
+        * sessions (i.e. after all the handles).  Once the buffer has
+        * been filled it markes the session number of our auth
+        * session so we can find it again in the response buffer.
+        *
+        * The two cases are distinguished because the first offset
+        * must always be greater than TPM_HEADER_SIZE and the second
+        * must be less than or equal to 5.
+        */
+       u32 session;
+       /*
+        * the size here is variable and set by the size of our_nonce
+        * which must be between 16 and the name hash length. we set
+        * the maximum sha256 size for the greatest protection
+        */
+       u8 our_nonce[SHA256_DIGEST_SIZE];
+       u8 tpm_nonce[SHA256_DIGEST_SIZE];
+       /*
+        * the salt is only used across the session command/response
+        * after that it can be used as a scratch area
+        */
+       union {
+               u8 salt[EC_PT_SZ];
+               /* scratch for key + IV */
+               u8 scratch[AES_KEYBYTES + AES_BLOCK_SIZE];
+       };
+       u8 session_key[SHA256_DIGEST_SIZE];
+};
+
+/*
+ * It turns out the crypto hmac(sha256) is hard for us to consume
+ * because it assumes a fixed key and the TPM seems to change the key
+ * on every operation, so we weld the hmac init and final functions in
+ * here to give it the same usage characteristics as a regular hash
+ */
+static void hmac_init(struct sha256_state *sctx, u8 *key, int keylen)
+{
+       u8 pad[SHA256_BLOCK_SIZE];
+       int i;
+
+       sha256_init(sctx);
+       for (i = 0; i < sizeof(pad); i++) {
+               if (i < keylen)
+                       pad[i] = key[i];
+               else
+                       pad[i] = 0;
+               pad[i] ^= HMAC_IPAD_VALUE;
+       }
+       sha256_update(sctx, pad, sizeof(pad));
+}
+
+static void hmac_final(struct sha256_state *sctx, u8 *key, int keylen, u8 *out)
+{
+       u8 pad[SHA256_BLOCK_SIZE];
+       int i;
+
+       for (i = 0; i < sizeof(pad); i++) {
+               if (i < keylen)
+                       pad[i] = key[i];
+               else
+                       pad[i] = 0;
+               pad[i] ^= HMAC_OPAD_VALUE;
+       }
+
+       /* collect the final hash;  use out as temporary storage */
+       sha256_final(sctx, out);
+
+       sha256_init(sctx);
+       sha256_update(sctx, pad, sizeof(pad));
+       sha256_update(sctx, out, SHA256_DIGEST_SIZE);
+       sha256_final(sctx, out);
+}
+
+/*
+ * assume hash sha256 and nonces u, v of size SHA256_DIGEST_SIZE but
+ * otherwise standard KDFa.  Note output is in bytes not bits.
+ */
+static void KDFa(u8 *key, int keylen, const char *label, u8 *u,
+                u8 *v, int bytes, u8 *out)
+{
+       u32 counter;
+       const __be32 bits = cpu_to_be32(bytes * 8);
+
+       for (counter = 1; bytes > 0; bytes -= SHA256_DIGEST_SIZE, counter++,
+                    out += SHA256_DIGEST_SIZE) {
+               struct sha256_state sctx;
+               __be32 c = cpu_to_be32(counter);
+
+               hmac_init(&sctx, key, keylen);
+               sha256_update(&sctx, (u8 *)&c, sizeof(c));
+               sha256_update(&sctx, label, strlen(label)+1);
+               sha256_update(&sctx, u, SHA256_DIGEST_SIZE);
+               sha256_update(&sctx, v, SHA256_DIGEST_SIZE);
+               sha256_update(&sctx, (u8 *)&bits, sizeof(bits));
+               hmac_final(&sctx, key, keylen, out);
+       }
+}
+
+/*
+ * Somewhat of a bastardization of the real KDFe.  We're assuming
+ * we're working with known point sizes for the input parameters and
+ * the hash algorithm is fixed at sha256.  Because we know that the
+ * point size is 32 bytes like the hash size, there's no need to loop
+ * in this KDF.
+ */
+static void KDFe(u8 z[EC_PT_SZ], const char *str, u8 *pt_u, u8 *pt_v,
+                u8 *keyout)
+{
+       struct sha256_state sctx;
+       /*
+        * this should be an iterative counter, but because we know
+        *  we're only taking 32 bytes for the point using a sha256
+        *  hash which is also 32 bytes, there's only one loop
+        */
+       __be32 c = cpu_to_be32(1);
+
+       sha256_init(&sctx);
+       /* counter (BE) */
+       sha256_update(&sctx, (u8 *)&c, sizeof(c));
+       /* secret value */
+       sha256_update(&sctx, z, EC_PT_SZ);
+       /* string including trailing zero */
+       sha256_update(&sctx, str, strlen(str)+1);
+       sha256_update(&sctx, pt_u, EC_PT_SZ);
+       sha256_update(&sctx, pt_v, EC_PT_SZ);
+       sha256_final(&sctx, keyout);
+}
+
+static void tpm_buf_append_salt(struct tpm_buf *buf, struct tpm_chip *chip)
+{
+       struct crypto_kpp *kpp;
+       struct kpp_request *req;
+       struct scatterlist s[2], d[1];
+       struct ecdh p = {0};
+       u8 encoded_key[EC_PT_SZ], *x, *y;
+       unsigned int buf_len;
+
+       /* secret is two sized points */
+       tpm_buf_append_u16(buf, (EC_PT_SZ + 2)*2);
+       /*
+        * we cheat here and append uninitialized data to form
+        * the points.  All we care about is getting the two
+        * co-ordinate pointers, which will be used to overwrite
+        * the uninitialized data
+        */
+       tpm_buf_append_u16(buf, EC_PT_SZ);
+       x = &buf->data[tpm_buf_length(buf)];
+       tpm_buf_append(buf, encoded_key, EC_PT_SZ);
+       tpm_buf_append_u16(buf, EC_PT_SZ);
+       y = &buf->data[tpm_buf_length(buf)];
+       tpm_buf_append(buf, encoded_key, EC_PT_SZ);
+       sg_init_table(s, 2);
+       sg_set_buf(&s[0], x, EC_PT_SZ);
+       sg_set_buf(&s[1], y, EC_PT_SZ);
+
+       kpp = crypto_alloc_kpp("ecdh-nist-p256", CRYPTO_ALG_INTERNAL, 0);
+       if (IS_ERR(kpp)) {
+               dev_err(&chip->dev, "crypto ecdh allocation failed\n");
+               return;
+       }
+
+       buf_len = crypto_ecdh_key_len(&p);
+       if (sizeof(encoded_key) < buf_len) {
+               dev_err(&chip->dev, "salt buffer too small needs %d\n",
+                       buf_len);
+               goto out;
+       }
+       crypto_ecdh_encode_key(encoded_key, buf_len, &p);
+       /* this generates a random private key */
+       crypto_kpp_set_secret(kpp, encoded_key, buf_len);
+
+       /* salt is now the public point of this private key */
+       req = kpp_request_alloc(kpp, GFP_KERNEL);
+       if (!req)
+               goto out;
+       kpp_request_set_input(req, NULL, 0);
+       kpp_request_set_output(req, s, EC_PT_SZ*2);
+       crypto_kpp_generate_public_key(req);
+       /*
+        * we're not done: now we have to compute the shared secret
+        * which is our private key multiplied by the tpm_key public
+        * point, we actually only take the x point and discard the y
+        * point and feed it through KDFe to get the final secret salt
+        */
+       sg_set_buf(&s[0], chip->null_ec_key_x, EC_PT_SZ);
+       sg_set_buf(&s[1], chip->null_ec_key_y, EC_PT_SZ);
+       kpp_request_set_input(req, s, EC_PT_SZ*2);
+       sg_init_one(d, chip->auth->salt, EC_PT_SZ);
+       kpp_request_set_output(req, d, EC_PT_SZ);
+       crypto_kpp_compute_shared_secret(req);
+       kpp_request_free(req);
+
+       /*
+        * pass the shared secret through KDFe for salt. Note salt
+        * area is used both for input shared secret and output salt.
+        * This works because KDFe fully consumes the secret before it
+        * writes the salt
+        */
+       KDFe(chip->auth->salt, "SECRET", x, chip->null_ec_key_x,
+            chip->auth->salt);
+ out:
+       crypto_free_kpp(kpp);
+}
+/**
+ * tpm2_end_auth_session() - kill the allocated auth session
+ * @chip: the TPM chip structure
+ *
+ * ends the session started by tpm2_start_auth_session and frees all
+ * the resources.  Under normal conditions,
+ * tpm_buf_check_hmac_response() will correctly end the session if
+ * required, so this function is only for use in error legs that will
+ * bypass the normal invocation of tpm_buf_check_hmac_response().
+ */
+void tpm2_end_auth_session(struct tpm_chip *chip)
+{
+       tpm2_flush_context(chip, chip->auth->handle);
+       memzero_explicit(chip->auth, sizeof(*chip->auth));
+}
+EXPORT_SYMBOL(tpm2_end_auth_session);
+
+static int tpm2_parse_start_auth_session(struct tpm2_auth *auth,
+                                        struct tpm_buf *buf)
+{
+       struct tpm_header *head = (struct tpm_header *)buf->data;
+       u32 tot_len = be32_to_cpu(head->length);
+       off_t offset = TPM_HEADER_SIZE;
+       u32 val;
+
+       /* we're starting after the header so adjust the length */
+       tot_len -= TPM_HEADER_SIZE;
+
+       /* should have handle plus nonce */
+       if (tot_len != 4 + 2 + sizeof(auth->tpm_nonce))
+               return -EINVAL;
+
+       auth->handle = tpm_buf_read_u32(buf, &offset);
+       val = tpm_buf_read_u16(buf, &offset);
+       if (val != sizeof(auth->tpm_nonce))
+               return -EINVAL;
+       memcpy(auth->tpm_nonce, &buf->data[offset], sizeof(auth->tpm_nonce));
+       /* now compute the session key from the nonces */
+       KDFa(auth->salt, sizeof(auth->salt), "ATH", auth->tpm_nonce,
+            auth->our_nonce, sizeof(auth->session_key), auth->session_key);
+
+       return 0;
+}
+
+/**
+ * tpm2_start_auth_session() - create a HMAC authentication session with the 
TPM
+ * @chip: the TPM chip structure to create the session with
+ *
+ * This function loads the NULL seed from its saved context and starts
+ * an authentication session on the null seed, fills in the
+ * @chip->auth structure to contain all the session details necessary
+ * for performing the HMAC, encrypt and decrypt operations and
+ * returns.  The NULL seed is flushed before this function returns.
+ *
+ * Return: zero on success or actual error encountered.
+ */
+int tpm2_start_auth_session(struct tpm_chip *chip)
+{
+       struct tpm_buf buf;
+       struct tpm2_auth *auth = chip->auth;
+       int rc;
+       unsigned int offset = 0; /* dummy offset for null seed context */
+       u32 nullkey;
+
+       rc = tpm2_load_context(chip, chip->null_key_context, &offset,
+                              &nullkey);
+       if (rc)
+               goto out;
+
+       auth->session = TPM_HEADER_SIZE;
+
+       rc = tpm_buf_init(&buf, TPM2_ST_NO_SESSIONS, TPM2_CC_START_AUTH_SESS);
+       if (rc)
+               goto out;
+
+       /* salt key handle */
+       tpm_buf_append_u32(&buf, nullkey);
+       /* bind key handle */
+       tpm_buf_append_u32(&buf, TPM2_RH_NULL);
+       /* nonce caller */
+       get_random_bytes(auth->our_nonce, sizeof(auth->our_nonce));
+       tpm_buf_append_u16(&buf, sizeof(auth->our_nonce));
+       tpm_buf_append(&buf, auth->our_nonce, sizeof(auth->our_nonce));
+
+       /* append encrypted salt and squirrel away unencrypted in auth */
+       tpm_buf_append_salt(&buf, chip);
+       /* session type (HMAC, audit or policy) */
+       tpm_buf_append_u8(&buf, TPM2_SE_HMAC);
+
+       /* symmetric encryption parameters */
+       /* symmetric algorithm */
+       tpm_buf_append_u16(&buf, TPM_ALG_AES);
+       /* bits for symmetric algorithm */
+       tpm_buf_append_u16(&buf, AES_KEYBITS);
+       /* symmetric algorithm mode (must be CFB) */
+       tpm_buf_append_u16(&buf, TPM_ALG_CFB);
+       /* hash algorithm for session */
+       tpm_buf_append_u16(&buf, TPM_ALG_SHA256);
+
+       rc = tpm_transmit_cmd(chip, &buf, 0, "start auth session");
+       tpm2_flush_context(chip, nullkey);
+
+       if (rc == TPM2_RC_SUCCESS)
+               rc = tpm2_parse_start_auth_session(auth, &buf);
+
+       tpm_buf_destroy(&buf);
+
+       if (rc)
+               goto out;
+
+ out:
+       return rc;
+}
+EXPORT_SYMBOL(tpm2_start_auth_session);
 
 static int tpm2_parse_create_primary(struct tpm_chip *chip, struct tpm_buf 
*buf,
                                     u32 *nullkey)
@@ -271,6 +652,10 @@ int tpm2_sessions_init(struct tpm_chip *chip)
        if (rc)
                dev_err(&chip->dev, "TPM: security failed (NULL seed 
derivation): %d\n", rc);
 
+       chip->auth = kmalloc(sizeof(*chip->auth), GFP_KERNEL);
+       if (!chip->auth)
+               return -ENOMEM;
+
        return rc;
 }
 EXPORT_SYMBOL(tpm2_sessions_init);
diff --git a/include/linux/tpm.h b/include/linux/tpm.h
index 3060ab794afb..444f0a83682a 100644
--- a/include/linux/tpm.h
+++ b/include/linux/tpm.h
@@ -30,6 +30,14 @@
 struct tpm_chip;
 struct trusted_key_payload;
 struct trusted_key_options;
+/* opaque structure, holds auth session parameters like the session key */
+struct tpm2_auth;
+
+enum tpm2_session_types {
+       TPM2_SE_HMAC    = 0x00,
+       TPM2_SE_POLICY  = 0x01,
+       TPM2_SE_TRIAL   = 0x02,
+};
 
 /* if you add a new hash to this, increment TPM_MAX_HASHES below */
 enum tpm_algorithms {
@@ -199,6 +207,7 @@ struct tpm_chip {
        u8 null_key_name[TPM2_NAME_SIZE];        /* name of NULL seed */
        u8 null_ec_key_x[EC_PT_SZ];
        u8 null_ec_key_y[EC_PT_SZ];
+       struct tpm2_auth *auth;
 #endif
 };
 
@@ -262,6 +271,7 @@ enum tpm2_command_codes {
        TPM2_CC_CONTEXT_LOAD            = 0x0161,
        TPM2_CC_CONTEXT_SAVE            = 0x0162,
        TPM2_CC_FLUSH_CONTEXT           = 0x0165,
+       TPM2_CC_START_AUTH_SESS         = 0x0176,
        TPM2_CC_VERIFY_SIGNATURE        = 0x0177,
        TPM2_CC_GET_CAPABILITY          = 0x017A,
        TPM2_CC_GET_RANDOM              = 0x017B,
@@ -345,20 +355,30 @@ struct tpm_buf {
        u32 flags;
        u32 length;
        u8 *data;
+       u8 handles;
 };
 
 enum tpm2_object_attributes {
        TPM2_OA_FIXED_TPM               = BIT(1),
+       TPM2_OA_ST_CLEAR                = BIT(2),
        TPM2_OA_FIXED_PARENT            = BIT(4),
        TPM2_OA_SENSITIVE_DATA_ORIGIN   = BIT(5),
        TPM2_OA_USER_WITH_AUTH          = BIT(6),
+       TPM2_OA_ADMIN_WITH_POLICY       = BIT(7),
        TPM2_OA_NO_DA                   = BIT(10),
+       TPM2_OA_ENCRYPTED_DUPLICATION   = BIT(11),
        TPM2_OA_RESTRICTED              = BIT(16),
        TPM2_OA_DECRYPT                 = BIT(17),
+       TPM2_OA_SIGN                    = BIT(18),
 };
 
 enum tpm2_session_attributes {
        TPM2_SA_CONTINUE_SESSION        = BIT(0),
+       TPM2_SA_AUDIT_EXCLUSIVE         = BIT(1),
+       TPM2_SA_AUDIT_RESET             = BIT(3),
+       TPM2_SA_DECRYPT                 = BIT(5),
+       TPM2_SA_ENCRYPT                 = BIT(6),
+       TPM2_SA_AUDIT                   = BIT(7),
 };
 
 struct tpm2_hash {
@@ -449,4 +469,18 @@ static inline void tpm_buf_append_empty_auth(struct 
tpm_buf *buf, u32 handle)
 {
 }
 #endif
+#ifdef CONFIG_TCG_TPM2_HMAC
+
+int tpm2_start_auth_session(struct tpm_chip *chip);
+void tpm2_end_auth_session(struct tpm_chip *chip);
+#else
+static inline int tpm2_start_auth_session(struct tpm_chip *chip)
+{
+       return 0;
+}
+static inline void tpm2_end_auth_session(struct tpm_chip *chip)
+{
+}
+#endif /* CONFIG_TCG_TPM2_HMAC */
+
 #endif
-- 
2.35.3


Reply via email to