On Tue 23-02-16 14:04:30, Waiman Long wrote:
> Linked list is used everywhere in the Linux kernel. However, if many
> threads are trying to add or delete entries into the same linked list,
> it can create a performance bottleneck.
> 
> This patch introduces a new per-cpu list subystem with associated
> per-cpu locks for protecting each of the lists individually. This
> allows list entries insertion and deletion operations to happen in
> parallel instead of being serialized with a global list and lock.
> 
> List entry insertion is strictly per cpu. List deletion, however, can
> happen in a cpu other than the one that did the insertion. So we still
> need lock to protect the list. Because of that, there may still be
> a small amount of contention when deletion is being done.
> 
> A new header file include/linux/percpu-list.h will be added with the
> associated pcpu_list_head and pcpu_list_node structures. The following
> functions are provided to manage the per-cpu list:
> 
>  1. int init_pcpu_list_head(struct pcpu_list_head **ppcpu_head)
>  2. void pcpu_list_add(struct pcpu_list_node *node,
>                      struct pcpu_list_head *head)
>  3. void pcpu_list_del(struct pcpu_list *node)
> 
> Iteration of all the list entries within a group of per-cpu
> lists is done by calling either the pcpu_list_iterate() or
> pcpu_list_iterate_safe() functions in a while loop. They correspond
> to the list_for_each_entry() and list_for_each_entry_safe() macros
> respectively. The iteration states are keep in a pcpu_list_state
> structure that is passed to the iteration functions.
> 
> Signed-off-by: Waiman Long <[email protected]>

Two comments below.

> +/*
> + * Helper function to find the first entry of the next per-cpu list
> + * It works somewhat like for_each_possible_cpu(cpu).
> + *
> + * Return: true if the entry is found, false if all the lists exhausted
> + */
> +static __always_inline bool
> +__pcpu_list_next_cpu(struct pcpu_list_head *head, struct pcpu_list_state 
> *state)
> +{
> +     if (state->lock)
> +             spin_unlock(state->lock);
> +next_cpu:
> +     /*
> +      * for_each_possible_cpu(cpu)
> +      */
> +     state->cpu = cpumask_next(state->cpu, cpu_possible_mask);
> +     if (state->cpu >= nr_cpu_ids)
> +             return false;   /* All the per-cpu lists iterated */
> +
> +     state->head = &per_cpu_ptr(head, state->cpu)->list;
> +     state->lock = &per_cpu_ptr(head, state->cpu)->lock;
> +     state->curr = list_entry(state->head->next,
> +                              struct pcpu_list_node, list);
> +     if (&state->curr->list == state->head)
> +             goto next_cpu;

This might be more comprehensible as:

        if (list_empty(state->head))
                goto next_cpu;

and you can do it just after updating state->head (no need to init
state->lock & state->curr if the list is empty).

Another note: Initialization of state->curr is IMO racy - you need to hold
state->lock to grab state->curr reliably, don't you? Otherwise someone can
remove the entry while you are working with it. So you need to move that
down just before returning.

> +
> +     spin_lock(state->lock);
> +     return true;
> +}
> +#endif /* NR_CPUS == 1 */

...

> +/*
> + * Delete a node from a percpu list
> + *
> + * We need to check the lock pointer again after taking the lock to guard
> + * against concurrent delete of the same node. If the lock pointer changes
> + * (becomes NULL or to a different one), we assume that the deletion was done
> + * elsewhere.
> + */
> +void pcpu_list_del(struct pcpu_list_node *node)
> +{
> +     spinlock_t *lock = READ_ONCE(node->lockptr);
> +
> +     if (unlikely(!lock))
> +             return;
> +
> +     spin_lock(lock);
> +     if (likely(lock == node->lockptr)) {
> +             list_del_init(&node->list);
> +             node->lockptr = NULL;
> +     }

But someone changing lockptr under your hands would mean that there are
two processes racing to remove entries and that would generally point to a
problem (and likely use-after-free) in the caller, won't it? Or do you have
some particular usecase in mind?

                                                                Honza

-- 
Jan Kara <[email protected]>
SUSE Labs, CR

Reply via email to