On 19/01/17 13:34, Fabrice Gasnier wrote:
> STM32 ADC conversions can be launched using hardware triggers.
> It can be used to start conversion sequences (group of channels).
> Selected channels are select via sequence registers.
> Trigger source is selected via 'extsel' (external trigger mux).
> Trigger polarity is set to rising edge by default.
> 
> Signed-off-by: Fabrice Gasnier <fabrice.gasn...@st.com>
A few small bits and pieces inline. The only significant element is about
making the data flow conform a little better to our poorly documented :(
typical data flow.  All about what the trigger is responsible for rather than
the device.

Looks pretty good to me!

Jonathan
> ---
>  drivers/iio/adc/Kconfig     |   2 +
>  drivers/iio/adc/stm32-adc.c | 349 
> +++++++++++++++++++++++++++++++++++++++++++-
>  2 files changed, 348 insertions(+), 3 deletions(-)
> 
> diff --git a/drivers/iio/adc/Kconfig b/drivers/iio/adc/Kconfig
> index 9c8b558..33341f4 100644
> --- a/drivers/iio/adc/Kconfig
> +++ b/drivers/iio/adc/Kconfig
> @@ -446,6 +446,8 @@ config STM32_ADC_CORE
>       depends on ARCH_STM32 || COMPILE_TEST
>       depends on OF
>       depends on REGULATOR
> +     select IIO_BUFFER
> +     select IIO_TRIGGERED_BUFFER
>       help
>         Select this option to enable the core driver for STMicroelectronics
>         STM32 analog-to-digital converter (ADC).
> diff --git a/drivers/iio/adc/stm32-adc.c b/drivers/iio/adc/stm32-adc.c
> index 5715e79..8d0b74b 100644
> --- a/drivers/iio/adc/stm32-adc.c
> +++ b/drivers/iio/adc/stm32-adc.c
> @@ -22,11 +22,16 @@
>  #include <linux/clk.h>
>  #include <linux/delay.h>
>  #include <linux/iio/iio.h>
> +#include <linux/iio/buffer.h>
> +#include <linux/iio/trigger.h>
> +#include <linux/iio/trigger_consumer.h>
> +#include <linux/iio/triggered_buffer.h>
>  #include <linux/interrupt.h>
>  #include <linux/io.h>
>  #include <linux/module.h>
>  #include <linux/platform_device.h>
>  #include <linux/of.h>
> +#include <linux/slab.h>
>  
>  #include "stm32-adc-core.h"
>  
> @@ -58,21 +63,66 @@
>  
>  /* STM32F4_ADC_CR2 - bit fields */
>  #define STM32F4_SWSTART                      BIT(30)
> +#define STM32F4_EXTEN_SHIFT          28
>  #define STM32F4_EXTEN_MASK           GENMASK(29, 28)
> +#define STM32F4_EXTSEL_SHIFT         24
> +#define STM32F4_EXTSEL_MASK          GENMASK(27, 24)
>  #define STM32F4_EOCS                 BIT(10)
>  #define STM32F4_ADON                 BIT(0)
>  
>  /* STM32F4_ADC_SQR1 - bit fields */
>  #define STM32F4_L_SHIFT                      20
>  #define STM32F4_L_MASK                       GENMASK(23, 20)
> +#define STM32F4_SQ16_SHIFT           15
> +#define STM32F4_SQ16_MASK            GENMASK(19, 15)
> +#define STM32F4_SQ15_SHIFT           10
> +#define STM32F4_SQ15_MASK            GENMASK(14, 10)
> +#define STM32F4_SQ14_SHIFT           5
> +#define STM32F4_SQ14_MASK            GENMASK(9, 5)
> +#define STM32F4_SQ13_SHIFT           0
> +#define STM32F4_SQ13_MASK            GENMASK(4, 0)
> +
> +/* STM32F4_ADC_SQR2 - bit fields */
> +#define STM32F4_SQ12_SHIFT           25
> +#define STM32F4_SQ12_MASK            GENMASK(29, 25)
> +#define STM32F4_SQ11_SHIFT           20
> +#define STM32F4_SQ11_MASK            GENMASK(24, 20)
> +#define STM32F4_SQ10_SHIFT           15
> +#define STM32F4_SQ10_MASK            GENMASK(19, 15)
> +#define STM32F4_SQ9_SHIFT            10
> +#define STM32F4_SQ9_MASK             GENMASK(14, 10)
> +#define STM32F4_SQ8_SHIFT            5
> +#define STM32F4_SQ8_MASK             GENMASK(9, 5)
> +#define STM32F4_SQ7_SHIFT            0
> +#define STM32F4_SQ7_MASK             GENMASK(4, 0)
>  
>  /* STM32F4_ADC_SQR3 - bit fields */
> +#define STM32F4_SQ6_SHIFT            25
> +#define STM32F4_SQ6_MASK             GENMASK(29, 25)
> +#define STM32F4_SQ5_SHIFT            20
> +#define STM32F4_SQ5_MASK             GENMASK(24, 20)
> +#define STM32F4_SQ4_SHIFT            15
> +#define STM32F4_SQ4_MASK             GENMASK(19, 15)
> +#define STM32F4_SQ3_SHIFT            10
> +#define STM32F4_SQ3_MASK             GENMASK(14, 10)
> +#define STM32F4_SQ2_SHIFT            5
> +#define STM32F4_SQ2_MASK             GENMASK(9, 5)
>  #define STM32F4_SQ1_SHIFT            0
>  #define STM32F4_SQ1_MASK             GENMASK(4, 0)
>
Given all the above are only used in a big table which basically says what
the are, I wonder in this particular case if there is any real benefit to
using the defines?  Might actually be clearer just to have the numbers
inline.  What do you think?  I'm not fussed either way.

> +#define STM32_ADC_MAX_SQ             16      /* SQ1..SQ16 */
>  #define STM32_ADC_TIMEOUT_US         100000
>  #define STM32_ADC_TIMEOUT    (msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
>  
> +/* External trigger enable */
> +enum stm32_adc_exten {
> +     STM32_EXTEN_SWTRIG,
> +     STM32_EXTEN_HWTRIG_RISING_EDGE,
> +     STM32_EXTEN_HWTRIG_FALLING_EDGE,
> +     STM32_EXTEN_HWTRIG_BOTH_EDGES,
> +};
> +
> +
>  /**
>   * struct stm32_adc - private data of each ADC IIO instance
>   * @common:          reference to ADC block common data
> @@ -82,6 +132,8 @@
>   * @clk:             clock for this adc instance
>   * @irq:             interrupt for this adc instance
>   * @lock:            spinlock
> + * @bufi:            data buffer index
> + * @num_conv:                expected number of scan conversions
>   */
>  struct stm32_adc {
>       struct stm32_adc_common *common;
> @@ -91,6 +143,8 @@ struct stm32_adc {
>       struct clk              *clk;
>       int                     irq;
>       spinlock_t              lock;           /* interrupt lock */
> +     int                     bufi;
> +     int                     num_conv;
>  };
>  
>  /**
> @@ -105,6 +159,18 @@ struct stm32_adc_chan_spec {
>       const char              *name;
>  };
>  
> +/**
> + * stm32_adc_regs - stm32 ADC misc registers & bitfield desc
> + * @reg:             register offset
> + * @mask:            bitfield mask
> + * @shift:           left shift
> + */
> +struct stm32_adc_regs {
> +     int reg;
> +     int mask;
> +     int shift;
You could use the FIELD_PREP macro to avoid having to store both the mask
and shift.  Up to you though as definitely a matter for personal taste!
> +};
> +
>  /* Input definitions common for all STM32F4 instances */
>  static const struct stm32_adc_chan_spec stm32f4_adc123_channels[] = {
>       { IIO_VOLTAGE, 0, "in0" },
> @@ -126,6 +192,33 @@ struct stm32_adc_chan_spec {
>  };
>  
>  /**
> + * stm32f4_sqr_regs - describe regular sequence registers
> + * - L: sequence len (register & bit field)
> + * - SQ1..SQ16: sequence entries (register & bit field)
> + */
> +static const struct stm32_adc_regs stm32f4_sqr_regs[STM32_ADC_MAX_SQ + 1] = {
> +     /* L: len bit field description to be kept as first element */
> +     { STM32F4_ADC_SQR1, STM32F4_L_MASK, STM32F4_L_SHIFT },
> +     /* SQ1..SQ16 registers & bit fields */
> +     { STM32F4_ADC_SQR3, STM32F4_SQ1_MASK, STM32F4_SQ1_SHIFT },
> +     { STM32F4_ADC_SQR3, STM32F4_SQ2_MASK, STM32F4_SQ2_SHIFT },
> +     { STM32F4_ADC_SQR3, STM32F4_SQ3_MASK, STM32F4_SQ3_SHIFT },
> +     { STM32F4_ADC_SQR3, STM32F4_SQ4_MASK, STM32F4_SQ4_SHIFT },
> +     { STM32F4_ADC_SQR3, STM32F4_SQ5_MASK, STM32F4_SQ5_SHIFT },
> +     { STM32F4_ADC_SQR3, STM32F4_SQ6_MASK, STM32F4_SQ6_SHIFT },
> +     { STM32F4_ADC_SQR2, STM32F4_SQ7_MASK, STM32F4_SQ7_SHIFT },
> +     { STM32F4_ADC_SQR2, STM32F4_SQ8_MASK, STM32F4_SQ8_SHIFT },
> +     { STM32F4_ADC_SQR2, STM32F4_SQ9_MASK, STM32F4_SQ9_SHIFT },
> +     { STM32F4_ADC_SQR2, STM32F4_SQ10_MASK, STM32F4_SQ10_SHIFT },
> +     { STM32F4_ADC_SQR2, STM32F4_SQ11_MASK, STM32F4_SQ11_SHIFT },
> +     { STM32F4_ADC_SQR2, STM32F4_SQ12_MASK, STM32F4_SQ12_SHIFT },
> +     { STM32F4_ADC_SQR1, STM32F4_SQ13_MASK, STM32F4_SQ13_SHIFT },
> +     { STM32F4_ADC_SQR1, STM32F4_SQ14_MASK, STM32F4_SQ14_SHIFT },
> +     { STM32F4_ADC_SQR1, STM32F4_SQ15_MASK, STM32F4_SQ15_SHIFT },
> +     { STM32F4_ADC_SQR1, STM32F4_SQ16_MASK, STM32F4_SQ16_SHIFT },
> +};
> +
> +/**
>   * STM32 ADC registers access routines
>   * @adc: stm32 adc instance
>   * @reg: reg offset in adc instance
> @@ -211,6 +304,106 @@ static void stm32_adc_stop_conv(struct stm32_adc *adc)
>  }
>  
>  /**
> + * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
> + * @indio_dev: IIO device
> + * @scan_mask: channels to be converted
> + *
> + * Conversion sequence :
> + * Configure ADC scan sequence based on selected channels in scan_mask.
> + * Add channels to SQR registers, from scan_mask LSB to MSB, then
> + * program sequence len.
> + */
> +static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
> +                                const unsigned long *scan_mask)
> +{
> +     struct stm32_adc *adc = iio_priv(indio_dev);
> +     const struct iio_chan_spec *chan;
> +     u32 val, bit;
> +     int i = 0;
> +
> +     for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
> +             chan = indio_dev->channels + bit;
> +             /*
> +              * Assign one channel per SQ entry in regular
> +              * sequence, starting with SQ1.
> +              */
> +             i++;
> +             if (i > STM32_ADC_MAX_SQ)
> +                     return -EINVAL;
> +
> +             dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
> +                     __func__, chan->channel, i);
> +
> +             val = stm32_adc_readl(adc, stm32f4_sqr_regs[i].reg);
> +             val &= ~stm32f4_sqr_regs[i].mask;
> +             val |= chan->channel << stm32f4_sqr_regs[i].shift;
> +             stm32_adc_writel(adc, stm32f4_sqr_regs[i].reg, val);
> +     }
> +
> +     if (!i)
> +             return -EINVAL;
> +
> +     /* Sequence len */
> +     val = stm32_adc_readl(adc, stm32f4_sqr_regs[0].reg);
> +     val &= ~stm32f4_sqr_regs[0].mask;
> +     val |= ((i - 1) << stm32f4_sqr_regs[0].shift);
> +     stm32_adc_writel(adc, stm32f4_sqr_regs[0].reg, val);
> +
> +     return 0;
> +}
> +
> +/**
> + * stm32_adc_get_trig_extsel() - Get external trigger selection
> + * @indio_dev: IIO device
> + * @trig: trigger
> + *
> + * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
> + */
> +static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
> +                                  struct iio_trigger *trig)
> +{
> +     return -EINVAL;
?????
> +}
> +
> +/**
> + * stm32_adc_set_trig() - Set a regular trigger
> + * @indio_dev: IIO device
> + * @trig: IIO trigger
> + *
> + * Set trigger source/polarity (e.g. SW, or HW with polarity) :
> + * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
> + * - if HW trigger enabled, set source & polarity
> + */
> +static int stm32_adc_set_trig(struct iio_dev *indio_dev,
> +                           struct iio_trigger *trig)
> +{
> +     struct stm32_adc *adc = iio_priv(indio_dev);
> +     u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
> +     unsigned long flags;
> +     int ret;
> +
> +     if (trig) {
> +             ret = stm32_adc_get_trig_extsel(indio_dev, trig);
> +             if (ret < 0)
> +                     return ret;
> +
> +             /* set trigger source, default to rising edge */
Interesting.  The complexity of this device kicks in again.

If we are talking true exposed hardware pin (which I think it can be?) then
this ought to come from DT.  For the case of trigging on either edge of the
pwm style signals, we probably want to figure some way of allowing userspace
to control this.  For now in either case this is fine though! Got to start
somewhere.
> +             extsel = ret;
> +             exten = STM32_EXTEN_HWTRIG_RISING_EDGE;
> +     }
> +
> +     spin_lock_irqsave(&adc->lock, flags);
> +     val = stm32_adc_readl(adc, STM32F4_ADC_CR2);
> +     val &= ~(STM32F4_EXTEN_MASK | STM32F4_EXTSEL_MASK);
> +     val |= exten << STM32F4_EXTEN_SHIFT;
> +     val |= extsel << STM32F4_EXTSEL_SHIFT;
> +     stm32_adc_writel(adc, STM32F4_ADC_CR2, val);
> +     spin_unlock_irqrestore(&adc->lock, flags);
> +
> +     return 0;
> +}
> +
> +/**
>   * stm32_adc_single_conv() - Performs a single conversion
>   * @indio_dev: IIO device
>   * @chan: IIO channel
> @@ -234,6 +427,7 @@ static int stm32_adc_single_conv(struct iio_dev 
> *indio_dev,
>       reinit_completion(&adc->completion);
>  
>       adc->buffer = &result;
> +     adc->bufi = 0;
>  
>       /* Program chan number in regular sequence */
>       val = stm32_adc_readl(adc, STM32F4_ADC_SQR3);
> @@ -301,17 +495,58 @@ static int stm32_adc_read_raw(struct iio_dev *indio_dev,
>  static irqreturn_t stm32_adc_isr(int irq, void *data)
>  {
>       struct stm32_adc *adc = data;
> +     struct iio_dev *indio_dev = iio_priv_to_dev(adc);
>       u32 status = stm32_adc_readl(adc, STM32F4_ADC_SR);
>  
>       if (status & STM32F4_EOC) {
> -             *adc->buffer = stm32_adc_readw(adc, STM32F4_ADC_DR);
> -             complete(&adc->completion);
Normally I'd have put the separation between trigger and device a bit
earlier and had the actual reads in the function called by iio_trigger_poll
(and here after the wait for completion for the sysfs reads).

I think it will make little practical difference, but it will conform better
to the data flow model (that kicks around in my head and has been in various
presentations others have done) of the trigger indicating either:
1. Data ready
2. Data should be ready - i.e. grab it now if on demand.

The device side is responsible for then actually doing the read.

Code wise I think this means moving a few lines but I may have missed some
details.
> +             adc->buffer[adc->bufi] = stm32_adc_readw(adc, STM32F4_ADC_DR);
> +             if (iio_buffer_enabled(indio_dev)) {
> +                     adc->bufi++;
> +                     if (adc->bufi >= adc->num_conv) {
> +                             stm32_adc_conv_irq_disable(adc);
> +                             iio_trigger_poll(indio_dev->trig);
> +                     }
> +             } else {
> +                     complete(&adc->completion);
> +             }
>               return IRQ_HANDLED;
>       }
>  
>       return IRQ_NONE;
>  }
>  
> +/**
> + * stm32_adc_validate_trigger() - validate trigger for stm32 adc
> + * @indio_dev: IIO device
> + * @trig: new trigger
> + *
> + * Returns: 0 if trig matches one of the triggers registered by stm32 adc
> + * driver, -EINVAL otherwise.
> + */
> +static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
> +                                   struct iio_trigger *trig)
> +{
> +     return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
> +}
> +
> +static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
> +                                   const unsigned long *scan_mask)
> +{
> +     struct stm32_adc *adc = iio_priv(indio_dev);
> +     int ret;
> +     u32 bit;
> +
> +     adc->num_conv = 0;
> +     for_each_set_bit(bit, scan_mask, indio_dev->masklength)
> +             adc->num_conv++;
Isn't there a count bits function? bitmap_weight I think which using the
hamming weight.
> +
> +     ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
> +     if (ret)
> +             return ret;
> +
> +     return 0;
> +}
> +
>  static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
>                             const struct of_phandle_args *iiospec)
>  {
> @@ -350,11 +585,106 @@ static int stm32_adc_debugfs_reg_access(struct iio_dev 
> *indio_dev,
>  
>  static const struct iio_info stm32_adc_iio_info = {
>       .read_raw = stm32_adc_read_raw,
> +     .validate_trigger = stm32_adc_validate_trigger,
> +     .update_scan_mode = stm32_adc_update_scan_mode,
>       .debugfs_reg_access = stm32_adc_debugfs_reg_access,
>       .of_xlate = stm32_adc_of_xlate,
>       .driver_module = THIS_MODULE,
>  };
>  
> +static int stm32_adc_buffer_preenable(struct iio_dev *indio_dev)
> +{
> +     struct stm32_adc *adc = iio_priv(indio_dev);
> +
> +     /* Reset adc buffer index */
> +     adc->bufi = 0;
> +
> +     /* Allocate adc buffer */
> +     adc->buffer = kzalloc(indio_dev->scan_bytes, GFP_KERNEL);
Is this big enough to justify a separate allocation?  I'd be tempted to
just allocate the maximum possible size as part of the stm32_adc structure..

> +     if (!adc->buffer)
> +             return -ENOMEM;
> +
> +     return 0;
> +}
> +
> +static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
> +{
> +     struct stm32_adc *adc = iio_priv(indio_dev);
> +     int ret;
> +
> +     ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
> +     if (ret) {
> +             dev_err(&indio_dev->dev, "Can't set trigger\n");
> +             return ret;
> +     }
> +
> +     ret = iio_triggered_buffer_postenable(indio_dev);
> +     if (ret < 0)
Handle unwinding of previous calls if this fails.
> +             return ret;
> +
> +     stm32_adc_conv_irq_enable(adc);
> +     stm32_adc_start_conv(adc);
> +
> +     return 0;
> +}
> +
> +static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
> +{
> +     struct stm32_adc *adc = iio_priv(indio_dev);
> +     int ret;
> +
> +     stm32_adc_stop_conv(adc);
> +     stm32_adc_conv_irq_disable(adc);
> +
> +     ret = iio_triggered_buffer_predisable(indio_dev);
> +     if (ret < 0)
> +             return ret;
> +
> +     ret = stm32_adc_set_trig(indio_dev, NULL);
> +     if (ret)
> +             dev_err(&indio_dev->dev, "Can't clear trigger\n");
> +
> +     return ret;
> +}
> +
> +static int stm32_adc_buffer_postdisable(struct iio_dev *indio_dev)
> +{
> +     struct stm32_adc *adc = iio_priv(indio_dev);
> +
> +     kfree(adc->buffer);
> +     adc->buffer = NULL;
> +
> +     return 0;
> +}
> +
> +static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
> +     .preenable = &stm32_adc_buffer_preenable,
> +     .postenable = &stm32_adc_buffer_postenable,
> +     .predisable = &stm32_adc_buffer_predisable,
> +     .postdisable = &stm32_adc_buffer_postdisable,
> +};
> +
> +static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
> +{
> +     struct iio_poll_func *pf = p;
> +     struct iio_dev *indio_dev = pf->indio_dev;
> +     struct stm32_adc *adc = iio_priv(indio_dev);
> +
> +     dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
> +
> +     /* reset buffer index */
> +     adc->bufi = 0;
> +     iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
> +                                        pf->timestamp);
> +
> +     iio_trigger_notify_done(indio_dev->trig);
> +
> +     /* re-enable eoc irq */
> +     stm32_adc_conv_irq_enable(adc);
> +
> +     return IRQ_HANDLED;
> +}
> +
>  static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
>                                   struct iio_chan_spec *chan,
>                                   const struct stm32_adc_chan_spec *channel,
> @@ -471,14 +801,26 @@ static int stm32_adc_probe(struct platform_device *pdev)
>       if (ret < 0)
>               goto err_clk_disable;
>  
> +     ret = iio_triggered_buffer_setup(indio_dev,
> +                                      &iio_pollfunc_store_time,
> +                                      &stm32_adc_trigger_handler,
> +                                      &stm32_adc_buffer_setup_ops);
> +     if (ret) {
> +             dev_err(&pdev->dev, "buffer setup failed\n");
> +             goto err_clk_disable;
> +     }
> +
>       ret = iio_device_register(indio_dev);
>       if (ret) {
>               dev_err(&pdev->dev, "iio dev register failed\n");
> -             goto err_clk_disable;
> +             goto err_buffer_cleanup;
>       }
>  
>       return 0;
>  
> +err_buffer_cleanup:
> +     iio_triggered_buffer_cleanup(indio_dev);
> +
>  err_clk_disable:
>       clk_disable_unprepare(adc->clk);
>  
> @@ -491,6 +833,7 @@ static int stm32_adc_remove(struct platform_device *pdev)
>       struct iio_dev *indio_dev = iio_priv_to_dev(adc);
>  
>       iio_device_unregister(indio_dev);
> +     iio_triggered_buffer_cleanup(indio_dev);
>       clk_disable_unprepare(adc->clk);
>  
>       return 0;
> 

Reply via email to