kmem_cache->cpu_partial is just used when CONFIG_SLUB_CPU_PARTIAL is set,
so wrap it with config CONFIG_SLUB_CPU_PARTIAL will save some space
on 32bit arch.

This patch wrap kmem_cache->cpu_partial in config CONFIG_SLUB_CPU_PARTIAL
and wrap its sysfs too.

Signed-off-by: Wei Yang <[email protected]>
---
 include/linux/slub_def.h |  2 ++
 mm/slub.c                | 72 +++++++++++++++++++++++++++++-------------------
 2 files changed, 46 insertions(+), 28 deletions(-)

diff --git a/include/linux/slub_def.h b/include/linux/slub_def.h
index 0debd8df1a7d..477ab99800ed 100644
--- a/include/linux/slub_def.h
+++ b/include/linux/slub_def.h
@@ -69,7 +69,9 @@ struct kmem_cache {
        int size;               /* The size of an object including meta data */
        int object_size;        /* The size of an object without meta data */
        int offset;             /* Free pointer offset. */
+#ifdef CONFIG_SLUB_CPU_PARTIAL
        int cpu_partial;        /* Number of per cpu partial objects to keep 
around */
+#endif
        struct kmem_cache_order_objects oo;
 
        /* Allocation and freeing of slabs */
diff --git a/mm/slub.c b/mm/slub.c
index fde499b6dad8..94978f27882a 100644
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -1829,7 +1829,10 @@ static void *get_partial_node(struct kmem_cache *s, 
struct kmem_cache_node *n,
                        stat(s, CPU_PARTIAL_NODE);
                }
                if (!kmem_cache_has_cpu_partial(s)
-                       || available > s->cpu_partial / 2)
+#ifdef CONFIG_SLUB_CPU_PARTIAL
+                       || available > s->cpu_partial / 2
+#endif
+                       )
                        break;
 
        }
@@ -3418,6 +3421,39 @@ static void set_min_partial(struct kmem_cache *s, 
unsigned long min)
        s->min_partial = min;
 }
 
+static void set_cpu_partial(struct kmem_cache *s)
+{
+#ifdef CONFIG_SLUB_CPU_PARTIAL
+       /*
+        * cpu_partial determined the maximum number of objects kept in the
+        * per cpu partial lists of a processor.
+        *
+        * Per cpu partial lists mainly contain slabs that just have one
+        * object freed. If they are used for allocation then they can be
+        * filled up again with minimal effort. The slab will never hit the
+        * per node partial lists and therefore no locking will be required.
+        *
+        * This setting also determines
+        *
+        * A) The number of objects from per cpu partial slabs dumped to the
+        *    per node list when we reach the limit.
+        * B) The number of objects in cpu partial slabs to extract from the
+        *    per node list when we run out of per cpu objects. We only fetch
+        *    50% to keep some capacity around for frees.
+        */
+       if (!kmem_cache_has_cpu_partial(s))
+               s->cpu_partial = 0;
+       else if (s->size >= PAGE_SIZE)
+               s->cpu_partial = 2;
+       else if (s->size >= 1024)
+               s->cpu_partial = 6;
+       else if (s->size >= 256)
+               s->cpu_partial = 13;
+       else
+               s->cpu_partial = 30;
+#endif
+}
+
 /*
  * calculate_sizes() determines the order and the distribution of data within
  * a slab object.
@@ -3576,33 +3612,7 @@ static int kmem_cache_open(struct kmem_cache *s, 
unsigned long flags)
         */
        set_min_partial(s, ilog2(s->size) / 2);
 
-       /*
-        * cpu_partial determined the maximum number of objects kept in the
-        * per cpu partial lists of a processor.
-        *
-        * Per cpu partial lists mainly contain slabs that just have one
-        * object freed. If they are used for allocation then they can be
-        * filled up again with minimal effort. The slab will never hit the
-        * per node partial lists and therefore no locking will be required.
-        *
-        * This setting also determines
-        *
-        * A) The number of objects from per cpu partial slabs dumped to the
-        *    per node list when we reach the limit.
-        * B) The number of objects in cpu partial slabs to extract from the
-        *    per node list when we run out of per cpu objects. We only fetch
-        *    50% to keep some capacity around for frees.
-        */
-       if (!kmem_cache_has_cpu_partial(s))
-               s->cpu_partial = 0;
-       else if (s->size >= PAGE_SIZE)
-               s->cpu_partial = 2;
-       else if (s->size >= 1024)
-               s->cpu_partial = 6;
-       else if (s->size >= 256)
-               s->cpu_partial = 13;
-       else
-               s->cpu_partial = 30;
+       set_cpu_partial(s);
 
 #ifdef CONFIG_NUMA
        s->remote_node_defrag_ratio = 1000;
@@ -3989,7 +3999,9 @@ void __kmemcg_cache_deactivate(struct kmem_cache *s)
         * Disable empty slabs caching. Used to avoid pinning offline
         * memory cgroups by kmem pages that can be freed.
         */
+#ifdef CONFIG_SLUB_CPU_PARTIAL
        s->cpu_partial = 0;
+#endif
        s->min_partial = 0;
 
        /*
@@ -4929,6 +4941,7 @@ static ssize_t min_partial_store(struct kmem_cache *s, 
const char *buf,
 }
 SLAB_ATTR(min_partial);
 
+#ifdef CONFIG_SLUB_CPU_PARTIAL
 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
 {
        return sprintf(buf, "%u\n", s->cpu_partial);
@@ -4951,6 +4964,7 @@ static ssize_t cpu_partial_store(struct kmem_cache *s, 
const char *buf,
        return length;
 }
 SLAB_ATTR(cpu_partial);
+#endif
 
 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
 {
@@ -5363,7 +5377,9 @@ static struct attribute *slab_attrs[] = {
        &objs_per_slab_attr.attr,
        &order_attr.attr,
        &min_partial_attr.attr,
+#ifdef CONFIG_SLUB_CPU_PARTIAL
        &cpu_partial_attr.attr,
+#endif
        &objects_attr.attr,
        &objects_partial_attr.attr,
        &partial_attr.attr,
-- 
2.11.0

Reply via email to