> On Mon, Oct 16, 2017 at 3:26 PM, <kan.li...@intel.com> wrote: > > From: Kan Liang <kan.li...@intel.com> > > > > There could be different types of memory in the system. E.g normal > > System Memory, Persistent Memory. To understand how the workload > maps to > > those memories, it's important to know the I/O statistics on different > > type of memorys. Perf can collect address maps with physical addresses, > > but those are raw data. It still needs extra work to resolve the > > physical addresses. > > Providing a script to facilitate the physical addresses resolving and > > I/O statistics. > > > > Profiling with mem-loads and mem-stores if they are available. > > Looking up the physical address samples in /proc/iomem > > Providing memory type summary > > > > Here is an example > > #perf script record mem-phys-addr -- pmem_test_kernel > > [ perf record: Woken up 32 times to write data ] > > [ perf record: Captured and wrote 7.797 MB perf.data (101995 samples) ] > > #perf script report mem-phys-addr > > Memory type summary > > > > Event: mem-loads > > Memory type count percentage > > ---------------------------------------- ----------- ----------- > > Persistent Memory 43740 60.6% > > System RAM 27179 37.7% > > N/A 1268 1.8% > > > > Event: mem-stores > > Memory type count percentage > > ---------------------------------------- ----------- ----------- > > System RAM 24508 82.2% > > N/A 5140 17.2% > > Persistent Memory 160 0.5% > > > > Signed-off-by: Kan Liang <kan.li...@intel.com> > > --- > > tools/perf/scripts/python/bin/mem-phys-addr-record | 30 ++++++ > > tools/perf/scripts/python/bin/mem-phys-addr-report | 3 + > > tools/perf/scripts/python/mem-phys-addr.py | 109 > +++++++++++++++++++++ > > .../util/scripting-engines/trace-event-python.c | 2 + > > 4 files changed, 144 insertions(+) > > create mode 100644 tools/perf/scripts/python/bin/mem-phys-addr- > record > > create mode 100644 tools/perf/scripts/python/bin/mem-phys-addr-report > > create mode 100644 tools/perf/scripts/python/mem-phys-addr.py > > > > diff --git a/tools/perf/scripts/python/bin/mem-phys-addr-record > b/tools/perf/scripts/python/bin/mem-phys-addr-record > > new file mode 100644 > > index 0000000..395b256 > > --- /dev/null > > +++ b/tools/perf/scripts/python/bin/mem-phys-addr-record > > @@ -0,0 +1,30 @@ > > +#!/bin/bash > > + > > +# > > +# Profiling physical memory accesses > > +# > > + > > +load=`perf list pmu | grep mem-loads` > > +store=`perf list pmu | grep mem-stores` > > +if [ -z "$load" ] && [ -z "$store" ] ; then > > + echo "There is no mem-loads or mem-stores support" > > + exit 1 > > +fi > > + > > +arg="-e" > > +if [ ! -z "$store" ] ; then > > + arg="$arg mem-stores:P" > > +fi > > + > > +if [ ! -z "$load" ] ; then > > + if [ ! -z "$store" ] ; then > > + arg="$arg,mem-loads:P" > > + else > > + arg="$arg mem-loads:P" > > + fi > > + arg="$arg -W" > > +fi > > + > > +arg="$arg -d --phys-data" > > + > > +perf record $arg $@ > > diff --git a/tools/perf/scripts/python/bin/mem-phys-addr-report > b/tools/perf/scripts/python/bin/mem-phys-addr-report > > new file mode 100644 > > index 0000000..3f2b847 > > --- /dev/null > > +++ b/tools/perf/scripts/python/bin/mem-phys-addr-report > > @@ -0,0 +1,3 @@ > > +#!/bin/bash > > +# description: resolve physical address samples > > +perf script $@ -s "$PERF_EXEC_PATH"/scripts/python/mem-phys-addr.py > > diff --git a/tools/perf/scripts/python/mem-phys-addr.py > b/tools/perf/scripts/python/mem-phys-addr.py > > new file mode 100644 > > index 0000000..73b3a63 > > --- /dev/null > > +++ b/tools/perf/scripts/python/mem-phys-addr.py > > @@ -0,0 +1,109 @@ > > +# mem-phys-addr.py: Resolve physical address samples > > +# Copyright (c) 2017, Intel Corporation. > > +# > > +# This program is free software; you can redistribute it and/or modify it > > +# under the terms and conditions of the GNU General Public License, > > +# version 2, as published by the Free Software Foundation. > > +# > > +# This program is distributed in the hope it will be useful, but WITHOUT > > +# ANY WARRANTY; without even the implied warranty of > MERCHANTABILITY or > > +# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public > License for > > +# more details. > > + > > +from __future__ import division > > +import os > > +import sys > > +import struct > > +import re > > +import bisect > > +import collections > > + > > +sys.path.append(os.environ['PERF_EXEC_PATH'] + \ > > + '/scripts/python/Perf-Trace-Util/lib/Perf/Trace') > > + > > +system_ram = [] > > +pmem = [] > > +f = None > > +load_event = ('mem-loads', '0x1cd') > > +store_event = ('mem-stores', '0x82d0'); > > I don't like the fact that you are mixing DLA and Load Latency. > The two mechanism do not operate the same way and any attempt > at comparing the loads and stores lead to misinterpretations. >
OK. I will only keep "-d --phys-data" options as default. For the event, is only mem-loads good enough as default event? Or should we just let the user fill up the event? Thanks, Kan > > +load_mem_type_cnt = collections.Counter() > > +store_mem_type_cnt = collections.Counter() > > + > > +def parse_iomem(): > > + global f > > + f = open('/proc/iomem', 'r') > > + for i, j in enumerate(f): > > + m = re.split('-|:',j,2) > > + if m[2].strip() == 'System RAM': > > + system_ram.append(long(m[0], 16)) > > + system_ram.append(long(m[1], 16)) > > + if m[2].strip() == 'Persistent Memory': > > + pmem.append(long(m[0], 16)) > > + pmem.append(long(m[1], 16)) > > + > > +def print_memory_type(): > > + print "Memory type summary\n" > > + print "Event: mem-loads" > > + print "%-40s %10s %10s\n" % ("Memory type", "count", > "percentage"), > > + print "%-40s %10s %10s\n" % > > ("----------------------------------------", \ > > + "-----------", "-----------"), > > + total = sum(load_mem_type_cnt.values()) > > + for mem_type, count in sorted(load_mem_type_cnt.most_common(), > \ > > + key = lambda(k, v): (v, k), reverse > > = True): > > + print "%-40s %10d %10.1f%%\n" % (mem_type, count, 100 * > count / total), > > + print "\n\n" > > + print "Event: mem-stores" > > + print "%-40s %10s %10s\n" % ("Memory type", "count", > "percentage"), > > + print "%-40s %10s %10s\n" % > > ("----------------------------------------", \ > > + "-----------", "-----------"), > > + total = sum(store_mem_type_cnt.values()) > > + for mem_type, count in sorted(store_mem_type_cnt.most_common(), > \ > > + key = lambda(k, v): (v, k), reverse > > = True): > > + print "%-40s %10d %10.1f%%\n" % (mem_type, count, 100 * > count / total), > > + > > +def trace_begin(): > > + parse_iomem() > > + > > +def trace_end(): > > + print_memory_type() > > + f.close() > > + > > +def is_system_ram(phys_addr): > > + #/proc/iomem is sorted > > + position = bisect.bisect(system_ram, phys_addr) > > + if position % 2 == 0: > > + return False > > + return True > > + > > +def is_persistent_mem(phys_addr): > > + position = bisect.bisect(pmem, phys_addr) > > + if position % 2 == 0: > > + return False > > + return True > > + > > +def find_memory_type(phys_addr): > > + if phys_addr == 0: > > + return "N/A" > > + if is_system_ram(phys_addr): > > + return "System RAM" > > + > > + if is_persistent_mem(phys_addr): > > + return "Persistent Memory" > > + > > + #slow path, search all > > + f.seek(0, 0) > > + for j in f: > > + m = re.split('-|:',j,2) > > + if long(m[0], 16) <= phys_addr <= long(m[1], 16): > > + return m[2] > > + return "N/A" > > + > > +def process_event(param_dict): > > + name = param_dict["ev_name"] > > + sample = param_dict["sample"] > > + phys_addr = sample["phys_addr"] > > + > > + if any(x in name for x in load_event): > > + load_mem_type_cnt[find_memory_type(phys_addr)] += 1 > > + if any(x in name for x in store_event): > > + store_mem_type_cnt[find_memory_type(phys_addr)] += 1 > > diff --git a/tools/perf/util/scripting-engines/trace-event-python.c > b/tools/perf/util/scripting-engines/trace-event-python.c > > index c7187f0..8cd6317 100644 > > --- a/tools/perf/util/scripting-engines/trace-event-python.c > > +++ b/tools/perf/util/scripting-engines/trace-event-python.c > > @@ -500,6 +500,8 @@ static PyObject *get_perf_sample_dict(struct > perf_sample *sample, > > PyLong_FromUnsignedLongLong(sample->time)); > > pydict_set_item_string_decref(dict_sample, "period", > > PyLong_FromUnsignedLongLong(sample->period)); > > + pydict_set_item_string_decref(dict_sample, "phys_addr", > > + PyLong_FromUnsignedLongLong(sample->phys_addr)); > > set_sample_read_in_dict(dict_sample, sample, evsel); > > pydict_set_item_string_decref(dict, "sample", dict_sample); > > > > -- > > 2.7.4 > >