From: Naga Sureshkumar Relli <[email protected]>

Add driver for arm pl353 static memory controller nand interface with
HW ECC support. This controller is used in xilinx zynq soc for interfacing
the nand flash memory.

Signed-off-by: Naga Sureshkumar Relli <[email protected]>
---
Changes in v8:
 - Added exec_op() implementation
 - Fixed the below v7 review comments
 - removed mtd_info from pl353_nand_info struct
 - Corrected ecc layout offsets
 - Added on-die ecc support
Changes in v7:
 - Currently not implemented the memclk rate adjustments. I will
   look into this later and once the basic driver is accepted.
 - Fixed GPL licence ident
Changes in v6:
 - Fixed the checkpatch.pl reported warnings
 - Using the address cycles information from the onfi param page
   earlier it is hardcoded to 5 in driver
Changes in v5:
 - Configure the nand timing parameters as per the onfi spec
Changes in v4:
 - Updated the driver to sync with pl353_smc driver APIs
Changes in v3:
 - implemented the proper error codes
 - further breakdown this patch to multiple sets
 - added the controller and driver details to Documentation section
 - updated the licenece to GPLv2
 - reorganized the pl353_nand_ecc_init function
Changes in v2:
 - use "depends on" rather than "select" option in kconfig
 - remove unused variable parts
 - remove dummy helper and use writel_relaxed directly
---
 drivers/mtd/nand/raw/Kconfig      |    8 +
 drivers/mtd/nand/raw/Makefile     |    1 +
 drivers/mtd/nand/raw/pl353_nand.c | 1363 +++++++++++++++++++++++++++++++++++++
 3 files changed, 1372 insertions(+)
 create mode 100644 drivers/mtd/nand/raw/pl353_nand.c

diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
index 2c6ecb7..5e20391 100644
--- a/drivers/mtd/nand/raw/Kconfig
+++ b/drivers/mtd/nand/raw/Kconfig
@@ -566,4 +566,12 @@ config MTD_NAND_MTK
          Enables support for NAND controller on MTK SoCs.
          This controller is found on mt27xx, mt81xx, mt65xx SoCs.
 
+config MTD_NAND_PL353
+       tristate "ARM Pl353 NAND flash driver"
+       depends on MTD_NAND && ARM
+       depends on PL35X_SMC
+       help
+         This enables access to the NAND flash device on PL353
+         SMC controller.
+
 endif # MTD_NAND
diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
index f16f59a..3e943f3 100644
--- a/drivers/mtd/nand/raw/Makefile
+++ b/drivers/mtd/nand/raw/Makefile
@@ -57,6 +57,7 @@ obj-$(CONFIG_MTD_NAND_HISI504)                += 
hisi504_nand.o
 obj-$(CONFIG_MTD_NAND_BRCMNAND)                += brcmnand/
 obj-$(CONFIG_MTD_NAND_QCOM)            += qcom_nandc.o
 obj-$(CONFIG_MTD_NAND_MTK)             += mtk_ecc.o mtk_nand.o
+obj-$(CONFIG_MTD_NAND_PL353)           += pl353_nand.o
 
 nand-objs := nand_base.o nand_bbt.o nand_timings.o nand_ids.o
 nand-objs += nand_amd.o
diff --git a/drivers/mtd/nand/raw/pl353_nand.c 
b/drivers/mtd/nand/raw/pl353_nand.c
new file mode 100644
index 0000000..55c51e2
--- /dev/null
+++ b/drivers/mtd/nand/raw/pl353_nand.c
@@ -0,0 +1,1363 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * ARM PL353 NAND flash controller driver
+ *
+ * Copyright (C) 2017 Xilinx, Inc
+ * Author: Punnaiah <[email protected]>
+ * Author: nagasuresh <[email protected]>
+ *
+ */
+
+#include <linux/err.h>
+#include <linux/delay.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/ioport.h>
+#include <linux/irq.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/partitions.h>
+#include <linux/of_address.h>
+#include <linux/of_device.h>
+#include <linux/of_platform.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+#include <linux/platform_data/pl353-smc.h>
+
+#define PL353_NAND_DRIVER_NAME "pl353-nand"
+
+/* NAND flash driver defines */
+#define PL353_NAND_CMD_PHASE   1       /* End command valid in command phase */
+#define PL353_NAND_DATA_PHASE  2       /* End command valid in data phase */
+#define PL353_NAND_ECC_SIZE    512     /* Size of data for ECC operation */
+
+/* Flash memory controller operating parameters */
+
+#define PL353_NAND_ECC_CONFIG  (BIT(4)  |      /* ECC read at end of page */ \
+                                (0 << 5))      /* No Jumping */
+
+/* AXI Address definitions */
+#define START_CMD_SHIFT                3
+#define END_CMD_SHIFT          11
+#define END_CMD_VALID_SHIFT    20
+#define ADDR_CYCLES_SHIFT      21
+#define CLEAR_CS_SHIFT         21
+#define ECC_LAST_SHIFT         10
+#define COMMAND_PHASE          (0 << 19)
+#define DATA_PHASE             BIT(19)
+
+#define PL353_NAND_ECC_LAST    BIT(ECC_LAST_SHIFT)     /* Set ECC_Last */
+#define PL353_NAND_CLEAR_CS    BIT(CLEAR_CS_SHIFT)     /* Clear chip select */
+
+#define ONDIE_ECC_FEATURE_ADDR 0x90
+#define PL353_NAND_ECC_BUSY_TIMEOUT    (1 * HZ)
+#define PL353_NAND_DEV_BUSY_TIMEOUT    (1 * HZ)
+#define PL353_NAND_LAST_TRANSFER_LENGTH        4
+
+/* Inline function for the NAND controller register write */
+static inline void pl353_nand_write32(void __iomem *addr, u32 val)
+{
+       writel_relaxed((val), (addr));
+}
+
+struct pl353_nfc_op {
+       u32 cmnds[4];
+       u32 thirdrow;
+       u32 type;
+       u32 end_cmd;
+       u32 addrs;
+       bool wait;
+       u32 len;
+       u32 naddrs;
+       unsigned int data_instr_idx;
+       const struct nand_op_instr *data_instr;
+       unsigned int rdy_timeout_ms;
+       unsigned int rdy_delay_ns;
+};
+
+/**
+ * struct pl353_nand_info - Defines the NAND flash driver instance
+ * @chip:              NAND chip information structure
+ * @nand_base:         Virtual address of the NAND flash device
+ * @end_cmd_pending:   End command is pending
+ * @end_cmd:           End command
+ * @row_addr_cycles:   Row address cycles
+ * @col_addr_cycles:   Column address cycles
+ * @address:           Page address
+ * @cmd_pending:       More command is needed
+ */
+struct pl353_nand_info {
+       struct nand_chip chip;
+       void __iomem *nand_base;
+       unsigned long end_cmd_pending;
+       unsigned long end_cmd;
+       u8 row_addr_cycles;
+       u8 col_addr_cycles;
+       u32 address;
+       u32 cmd_pending;
+};
+
+static int pl353_ecc_ooblayout16_ecc(struct mtd_info *mtd, int section,
+                                  struct mtd_oob_region *oobregion)
+{
+       struct nand_chip *chip = mtd_to_nand(mtd);
+
+       if (section >= chip->ecc.steps)
+               return -ERANGE;
+
+       oobregion->offset = (section * 16) + 0;
+       oobregion->length = chip->ecc.bytes;
+
+       return 0;
+}
+
+static int pl353_ecc_ooblayout16_free(struct mtd_info *mtd, int section,
+                                   struct mtd_oob_region *oobregion)
+{
+       struct nand_chip *chip = mtd_to_nand(mtd);
+
+       if (section >= chip->ecc.steps)
+               return -ERANGE;
+
+       oobregion->offset = (section * 16) + 8;
+
+       oobregion->length = 8;
+
+       return 0;
+}
+
+static const struct mtd_ooblayout_ops pl353_ecc_ooblayout16_ops = {
+       .ecc = pl353_ecc_ooblayout16_ecc,
+       .free = pl353_ecc_ooblayout16_free,
+};
+
+static int pl353_ecc_ooblayout64_ecc(struct mtd_info *mtd, int section,
+                                  struct mtd_oob_region *oobregion)
+{
+       struct nand_chip *chip = mtd_to_nand(mtd);
+
+       if (section >= chip->ecc.steps)
+               return -ERANGE;
+
+       oobregion->offset = (section * chip->ecc.bytes) + 52;
+       oobregion->length = chip->ecc.bytes;
+
+       return 0;
+}
+
+static int pl353_ecc_ooblayout64_free(struct mtd_info *mtd, int section,
+                                   struct mtd_oob_region *oobregion)
+{
+       struct nand_chip *chip = mtd_to_nand(mtd);
+
+       if (section)
+               return -ERANGE;
+       if (section >= chip->ecc.steps)
+               return -ERANGE;
+
+       oobregion->offset = (section * chip->ecc.bytes) + 2;
+
+       oobregion->length = 50;
+
+       return 0;
+}
+
+static const struct mtd_ooblayout_ops pl353_ecc_ooblayout64_ops = {
+       .ecc = pl353_ecc_ooblayout64_ecc,
+       .free = pl353_ecc_ooblayout64_free,
+};
+
+/* Generic flash bbt decriptors */
+static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
+static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+       .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+               | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+       .offs = 4,
+       .len = 4,
+       .veroffs = 20,
+       .maxblocks = 4,
+       .pattern = bbt_pattern
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+       .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+               | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+       .offs = 4,
+       .len = 4,
+       .veroffs = 20,
+       .maxblocks = 4,
+       .pattern = mirror_pattern
+};
+
+/**
+ * pl353_nand_read_buf_l - read chip data into buffer
+ * @chip:      Pointer to the NAND chip info structure
+ * @in:                Pointer to the buffer to store read data
+ * @len:       Number of bytes to read
+ * Return:     Always return zero
+ */
+static int pl353_nand_read_buf_l(struct nand_chip *chip,
+                                    uint8_t *in,
+                                    unsigned int len)
+{
+       int i;
+       unsigned long *ptr = (unsigned long *)in;
+
+       len >>= 2;
+       for (i = 0; i < len; i++)
+               ptr[i] = readl(chip->IO_ADDR_R);
+       return 0;
+}
+
+static void pl353_nand_write_buf_l(struct nand_chip *chip, const uint8_t *buf,
+                               int len)
+{
+       int i;
+       unsigned long *ptr = (unsigned long *)buf;
+
+       for (i = 0; i < len; i++)
+               writeb(ptr[i], chip->IO_ADDR_W);
+}
+
+/**
+ * pl353_nand_write_buf - write buffer to chip
+ * @mtd:       Pointer to the mtd info structure
+ * @buf:       Pointer to the buffer to store read data
+ * @len:       Number of bytes to write
+ */
+static void pl353_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
+                               int len)
+{
+       int i;
+       struct nand_chip *chip = mtd_to_nand(mtd);
+       unsigned long *ptr = (unsigned long *)buf;
+
+       len >>= 2;
+
+       for (i = 0; i < len; i++)
+               writel(ptr[i], chip->IO_ADDR_W);
+}
+
+/**
+ * pl353_nand_read_buf - read chip data into buffer
+ * @chip:      Pointer to the NAND chip info structure
+ * @in:        Pointer to the buffer to store read data
+ * @len:       Number of bytes to read
+ * Return:     0 on success or error value on failure
+ */
+static int pl353_nand_read_buf(struct nand_chip *chip,
+                                    uint8_t *in,
+                                    unsigned int len)
+{
+       int i;
+
+       for (i = 0; i < len; i++)
+               in[i] = readb(chip->IO_ADDR_R);
+
+       return 0;
+}
+
+/**
+ * pl353_nand_calculate_hwecc - Calculate Hardware ECC
+ * @mtd:       Pointer to the mtd_info structure
+ * @data:      Pointer to the page data
+ * @ecc_code:  Pointer to the ECC buffer where ECC data needs to be stored
+ *
+ * This function retrieves the Hardware ECC data from the controller and 
returns
+ * ECC data back to the MTD subsystem.
+ *
+ * Return:     0 on success or error value on failure
+ */
+static int pl353_nand_calculate_hwecc(struct mtd_info *mtd,
+                               const u8 *data, u8 *ecc_code)
+{
+       u32 ecc_value, ecc_status;
+       u8 ecc_reg, ecc_byte;
+       unsigned long timeout = jiffies + PL353_NAND_ECC_BUSY_TIMEOUT;
+       /* Wait till the ECC operation is complete or timeout */
+       do {
+               if (pl353_smc_ecc_is_busy())
+                       cpu_relax();
+               else
+                       break;
+       } while (!time_after_eq(jiffies, timeout));
+
+       if (time_after_eq(jiffies, timeout)) {
+               pr_err("%s timed out\n", __func__);
+               return -ETIMEDOUT;
+       }
+
+       for (ecc_reg = 0; ecc_reg < 4; ecc_reg++) {
+               /* Read ECC value for each block */
+               ecc_value = pl353_smc_get_ecc_val(ecc_reg);
+               ecc_status = (ecc_value >> 24) & 0xFF;
+               /* ECC value valid */
+               if (ecc_status & 0x40) {
+                       for (ecc_byte = 0; ecc_byte < 3; ecc_byte++) {
+                               /* Copy ECC bytes to MTD buffer */
+                               *ecc_code = ~ecc_value & 0xFF;
+                               ecc_value = ecc_value >> 8;
+                               ecc_code++;
+                       }
+               } else {
+                       pr_warn("%s status failed\n", __func__);
+                       return -1;
+               }
+       }
+       return 0;
+}
+
+/**
+ * onehot - onehot function
+ * @value:     Value to check for onehot
+ *
+ * This function checks whether a value is onehot or not.
+ * onehot is if and only if onebit is set.
+ *
+ * Return:     1 if it is onehot else 0
+ */
+static int onehot(unsigned short value)
+{
+       return (value & (value - 1)) == 0;
+}
+
+/**
+ * pl353_nand_correct_data - ECC correction function
+ * @mtd:       Pointer to the mtd_info structure
+ * @buf:       Pointer to the page data
+ * @read_ecc:  Pointer to the ECC value read from spare data area
+ * @calc_ecc:  Pointer to the calculated ECC value
+ *
+ * This function corrects the ECC single bit errors & detects 2-bit errors.
+ *
+ * Return:     0 if no ECC errors found
+ *             1 if single bit error found and corrected.
+ *             -1 if multiple ECC errors found.
+ */
+static int pl353_nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
+                               unsigned char *read_ecc,
+                               unsigned char *calc_ecc)
+{
+       unsigned char bit_addr;
+       unsigned int byte_addr;
+       unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper;
+       unsigned short calc_ecc_lower, calc_ecc_upper;
+
+       read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) & 0xfff;
+       read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) & 0xfff;
+
+       calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) & 0xfff;
+       calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) & 0xfff;
+
+       ecc_odd = read_ecc_lower ^ calc_ecc_lower;
+       ecc_even = read_ecc_upper ^ calc_ecc_upper;
+
+       if ((ecc_odd == 0) && (ecc_even == 0))
+               return 0;       /* no error */
+
+       if (ecc_odd == (~ecc_even & 0xfff)) {
+               /* bits [11:3] of error code is byte offset */
+               byte_addr = (ecc_odd >> 3) & 0x1ff;
+               /* bits [2:0] of error code is bit offset */
+               bit_addr = ecc_odd & 0x7;
+               /* Toggling error bit */
+               buf[byte_addr] ^= (1 << bit_addr);
+               return 1;
+       }
+
+       if (onehot(ecc_odd | ecc_even) == 1)
+               return 1; /* one error in parity */
+
+       return -1; /* Uncorrectable error */
+}
+
+static int pl353_dev_timeout(struct mtd_info *mtd, struct nand_chip *chip)
+{
+       unsigned long timeout = jiffies + PL353_NAND_DEV_BUSY_TIMEOUT;
+
+       do {
+               if (chip->dev_ready(mtd))
+                       break;
+               cpu_relax();
+       } while (!time_after_eq(jiffies, timeout));
+
+       if (time_after_eq(jiffies, timeout)) {
+               pr_err("%s timed out\n", __func__);
+               return -1;
+       }
+
+       return 0;
+}
+
+static void pl353_prepare_cmd(struct mtd_info *mtd, struct nand_chip *chip,
+       int page, int column, int start_cmd, int end_cmd, bool read)
+{
+       unsigned long data_phase_addr;
+       u32 end_cmd_valid = 0;
+       void __iomem *cmd_addr;
+       unsigned long cmd_phase_addr = 0, cmd_data = 0;
+
+       struct pl353_nand_info *xnand =
+               container_of(chip, struct pl353_nand_info, chip);
+
+       if (read)
+               end_cmd_valid = 1;
+       else
+               end_cmd_valid = 0;
+
+       cmd_phase_addr = (unsigned long __force)xnand->nand_base + (
+                        (((xnand->row_addr_cycles) + (xnand->col_addr_cycles))
+                        << ADDR_CYCLES_SHIFT) |
+                        (end_cmd_valid << END_CMD_VALID_SHIFT)         |
+                        (COMMAND_PHASE)                                |
+                        (end_cmd << END_CMD_SHIFT)                     |
+                        (start_cmd << START_CMD_SHIFT));
+       cmd_addr = (void __iomem * __force)cmd_phase_addr;
+
+       /* Get the data phase address */
+       data_phase_addr = (unsigned long __force)xnand->nand_base + (
+                         (0x0 << CLEAR_CS_SHIFT)                       |
+                         (0 << END_CMD_VALID_SHIFT)    |
+                         (DATA_PHASE)                                  |
+                         (end_cmd << END_CMD_SHIFT)                    |
+                         (0x0 << ECC_LAST_SHIFT));
+
+       chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;
+       chip->IO_ADDR_W = chip->IO_ADDR_R;
+       if (chip->options & NAND_BUSWIDTH_16)
+               column >>= 1;
+       cmd_data = column;
+       if (mtd->writesize > PL353_NAND_ECC_SIZE) {
+               cmd_data |= page << 16;
+               /* Another address cycle for devices > 128MiB */
+               if (chip->chipsize > (128 << 20)) {
+                       pl353_nand_write32(cmd_addr, cmd_data);
+                       cmd_data = (page >> 16);
+               }
+       } else {
+               cmd_data |= page << 8;
+       }
+       pl353_nand_write32(cmd_addr, cmd_data);
+}
+
+/**
+ * pl353_nand_read_oob - [REPLACEABLE] the most common OOB data read function
+ * @mtd:       Pointer to the mtd info structure
+ * @chip:      Pointer to the NAND chip info structure
+ * @page:      Page number to read
+ *
+ * Return:     Always return zero
+ */
+static int pl353_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+                           int page)
+{
+
+       unsigned long data_phase_addr;
+       uint8_t *p;
+
+       chip->pagebuf = -1;
+       if (mtd->writesize < PL353_NAND_ECC_SIZE)
+               return 0;
+
+       pl353_prepare_cmd(mtd, chip, page, mtd->writesize, NAND_CMD_READ0,
+               NAND_CMD_READSTART, 1);
+
+       ndelay(100);
+       pl353_dev_timeout(mtd, chip);
+
+       p = chip->oob_poi;
+       pl353_nand_read_buf_l(chip, p,
+               (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH));
+       p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+
+       data_phase_addr = (unsigned long __force)chip->IO_ADDR_R;
+       data_phase_addr |= PL353_NAND_CLEAR_CS;
+       chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;
+       pl353_nand_read_buf_l(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH);
+
+       return 0;
+}
+
+/**
+ * pl353_nand_write_oob - [REPLACEABLE] the most common OOB data write function
+ * @mtd:       Pointer to the mtd info structure
+ * @chip:      Pointer to the NAND chip info structure
+ * @page:      Page number to write
+ *
+ * Return:     Zero on success and EIO on failure
+ */
+static int pl353_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+                            int page)
+{
+
+       const uint8_t *buf = chip->oob_poi;
+       unsigned long data_phase_addr;
+       struct pl353_nand_info *xnand =
+               container_of(chip, struct pl353_nand_info, chip);
+       u32 addrcycles = 0, ret;
+       unsigned long timeout = jiffies + PL353_NAND_DEV_BUSY_TIMEOUT;
+       u8 status;
+
+       chip->pagebuf = -1;
+       addrcycles = xnand->row_addr_cycles + xnand->col_addr_cycles;
+       pl353_prepare_cmd(mtd, chip, page, mtd->writesize, NAND_CMD_SEQIN,
+               NAND_CMD_PAGEPROG, 0);
+       ndelay(100);
+       pl353_nand_write_buf(mtd, buf,
+                       (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH));
+       buf += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+
+       data_phase_addr = (unsigned long __force)chip->IO_ADDR_W;
+       data_phase_addr |= PL353_NAND_CLEAR_CS;
+       data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
+       chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr;
+       pl353_nand_write_buf(mtd, buf, PL353_NAND_LAST_TRANSFER_LENGTH);
+
+       /* Send command to program the OOB data */
+       ret = nand_status_op(chip, &status);
+       timeout = jiffies + msecs_to_jiffies(timeout);
+       do {
+               if (chip->dev_ready) {
+                       if (chip->dev_ready(mtd))
+                               break;
+               } else {
+                       if (status & NAND_STATUS_READY)
+                               break;
+               }
+               cond_resched();
+       } while (time_before(jiffies, timeout));
+
+       /* This can happen if in case of timeout or buggy dev_ready */
+       WARN_ON(!(status & NAND_STATUS_READY));
+
+       return (status & NAND_STATUS_FAIL) ? -EIO : 0;
+}
+
+/**
+ * pl353_nand_read_page_raw - [Intern] read raw page data without ecc
+ * @mtd:               Pointer to the mtd info structure
+ * @chip:              Pointer to the NAND chip info structure
+ * @buf:               Pointer to the data buffer
+ * @oob_required:      Caller requires OOB data read to chip->oob_poi
+ * @page:              Page number to read
+ *
+ * Return:     Always return zero
+ */
+static int pl353_nand_read_page_raw(struct mtd_info *mtd,
+                               struct nand_chip *chip,
+                               uint8_t *buf, int oob_required, int page)
+{
+       unsigned long data_phase_addr;
+       uint8_t *p;
+
+       pl353_nand_read_buf_l(chip, buf, mtd->writesize);
+       p = chip->oob_poi;
+       pl353_nand_read_buf_l(chip, p,
+               (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH));
+       p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+
+       data_phase_addr = (unsigned long __force)chip->IO_ADDR_R;
+       data_phase_addr |= PL353_NAND_CLEAR_CS;
+       chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;
+
+       pl353_nand_read_buf_l(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH);
+       return 0;
+}
+
+/**
+ * pl353_nand_write_page_raw - [Intern] raw page write function
+ * @mtd:               Pointer to the mtd info structure
+ * @chip:              Pointer to the NAND chip info structure
+ * @buf:               Pointer to the data buffer
+ * @oob_required:      Caller requires OOB data read to chip->oob_poi
+ * @page:              Page number to write
+ *
+ * Return:     Always return zero
+ */
+static int pl353_nand_write_page_raw(struct mtd_info *mtd,
+                                   struct nand_chip *chip,
+                                   const uint8_t *buf, int oob_required,
+                                   int page)
+{
+       unsigned long data_phase_addr;
+       uint8_t *p;
+
+       pl353_prepare_cmd(mtd, chip, page, 0, NAND_CMD_SEQIN,
+               NAND_CMD_PAGEPROG, 0);
+       pl353_nand_write_buf(mtd, buf, mtd->writesize);
+       p = chip->oob_poi;
+       pl353_nand_write_buf(mtd, p,
+                       (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH));
+       p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+
+       data_phase_addr = (unsigned long __force)chip->IO_ADDR_W;
+       data_phase_addr |= PL353_NAND_CLEAR_CS;
+       data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
+       chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr;
+
+       pl353_nand_write_buf(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH);
+
+       return 0;
+}
+
+/**
+ * nand_write_page_hwecc - Hardware ECC based page write function
+ * @mtd:               Pointer to the mtd info structure
+ * @chip:              Pointer to the NAND chip info structure
+ * @buf:               Pointer to the data buffer
+ * @oob_required:      Caller requires OOB data read to chip->oob_poi
+ * @page:              Page number to write
+ *
+ * This functions writes data and hardware generated ECC values in to the page.
+ *
+ * Return:     Always return zero
+ */
+static int pl353_nand_write_page_hwecc(struct mtd_info *mtd,
+                                   struct nand_chip *chip, const uint8_t *buf,
+                                   int oob_required, int page)
+{
+
+       int eccsize = chip->ecc.size;
+       int eccsteps = chip->ecc.steps;
+       uint8_t *ecc_calc = chip->ecc.calc_buf;
+       const uint8_t *p = buf;
+       uint8_t *oob_ptr;
+       u32 ret;
+       unsigned long data_phase_addr, timeo;
+       u8 status;
+
+       pl353_prepare_cmd(mtd, chip, page, 0, NAND_CMD_SEQIN,
+               NAND_CMD_PAGEPROG, 0);
+       ndelay(100);
+       for ( ; (eccsteps - 1); eccsteps--) {
+               pl353_nand_write_buf(mtd, p, eccsize);
+               p += eccsize;
+       }
+       pl353_nand_write_buf(mtd, p,
+               (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH));
+       p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+
+       /* Set ECC Last bit to 1 */
+       data_phase_addr = (unsigned long __force)chip->IO_ADDR_W;
+       data_phase_addr |= PL353_NAND_ECC_LAST;
+       chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr;
+       pl353_nand_write_buf(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH);
+
+       p = buf;
+       chip->ecc.calculate(mtd, p, &ecc_calc[0]);
+
+       /* Wait for ECC to be calculated and read the error values */
+       ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi,
+                                               0, chip->ecc.total);
+       if (ret)
+               return ret;
+       /* Clear ECC last bit */
+       data_phase_addr = (unsigned long __force)chip->IO_ADDR_W;
+       data_phase_addr &= ~PL353_NAND_ECC_LAST;
+       chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr;
+
+       /* Write the spare area with ECC bytes */
+       oob_ptr = chip->oob_poi;
+       pl353_nand_write_buf(mtd, oob_ptr,
+                       (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH));
+
+       data_phase_addr = (unsigned long __force)chip->IO_ADDR_W;
+       data_phase_addr |= PL353_NAND_CLEAR_CS;
+       data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
+       chip->IO_ADDR_W = (void __iomem * __force)data_phase_addr;
+       oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+       pl353_nand_write_buf(mtd, oob_ptr, PL353_NAND_LAST_TRANSFER_LENGTH);
+
+       /*
+        * Apply this short delay always to ensure that we do wait tWB in any
+        * case on any machine.
+        */
+       ndelay(100);
+       ret = nand_status_op(chip, &status);
+       timeo = jiffies + msecs_to_jiffies(400);
+       do {
+               if (chip->dev_ready) {
+                       if (chip->dev_ready(mtd))
+                               break;
+               } else {
+                       if (status & NAND_STATUS_READY)
+                               break;
+               }
+               cond_resched();
+       } while (time_before(jiffies, timeo));
+
+       /* This can happen if in case of timeout or buggy dev_ready */
+       WARN_ON(!(status & NAND_STATUS_READY));
+
+       return (status & NAND_STATUS_FAIL) ? -EIO : 0;
+}
+
+/**
+ * pl353_nand_write_page_swecc - [REPLACEABLE] software ecc based page write
+ *                             function
+ * @mtd:               Pointer to the mtd info structure
+ * @chip:              Pointer to the NAND chip info structure
+ * @buf:               Pointer to the data buffer
+ * @oob_required:      Caller requires OOB data read to chip->oob_poi
+ * @page:              Page number to write
+ *
+ * Return:     Always return zero
+ */
+static int pl353_nand_write_page_swecc(struct mtd_info *mtd,
+                                   struct nand_chip *chip, const uint8_t *buf,
+                                   int oob_required, int page)
+{
+       int i, eccsize = chip->ecc.size;
+       int eccbytes = chip->ecc.bytes;
+       int eccsteps = chip->ecc.steps;
+       uint8_t *ecc_calc = chip->ecc.calc_buf;
+       const uint8_t *p = buf;
+       u32 ret;
+
+       for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
+               chip->ecc.calculate(mtd, p, &ecc_calc[0]);
+
+       ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi,
+                                               0, chip->ecc.total);
+       if (ret)
+               return ret;
+       chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
+
+       return 0;
+}
+
+/**
+ * pl353_nand_read_page_hwecc - Hardware ECC based page read function
+ * @mtd:               Pointer to the mtd info structure
+ * @chip:              Pointer to the NAND chip info structure
+ * @buf:               Pointer to the buffer to store read data
+ * @oob_required:      Caller requires OOB data read to chip->oob_poi
+ * @page:              Page number to read
+ *
+ * This functions reads data and checks the data integrity by comparing 
hardware
+ * generated ECC values and read ECC values from spare area.
+ *
+ * Return:     0 always and updates ECC operation status in to MTD structure
+ */
+static int pl353_nand_read_page_hwecc(struct mtd_info *mtd,
+                                struct nand_chip *chip,
+                                uint8_t *buf, int oob_required, int page)
+{
+       int i, stat, eccsize = chip->ecc.size;
+       int eccbytes = chip->ecc.bytes;
+       int eccsteps = chip->ecc.steps;
+       uint8_t *p = buf;
+       uint8_t *ecc_calc = chip->ecc.calc_buf;
+       uint8_t *ecc_code = chip->ecc.code_buf;
+
+       uint8_t *oob_ptr;
+       u32 ret;
+       unsigned long data_phase_addr;
+       unsigned long timeout = jiffies + PL353_NAND_DEV_BUSY_TIMEOUT;
+
+       pl353_prepare_cmd(mtd, chip, page, 0, NAND_CMD_READ0,
+               NAND_CMD_READSTART, 1);
+       ndelay(100);
+       do {
+               if (chip->dev_ready(mtd))
+                       break;
+               cpu_relax();
+       } while (!time_after_eq(jiffies, timeout));
+
+       if (time_after_eq(jiffies, timeout)) {
+               pr_err("%s timed out\n", __func__);
+               return -1;
+       }
+       for ( ; (eccsteps - 1); eccsteps--) {
+               pl353_nand_read_buf_l(chip, p, eccsize);
+               p += eccsize;
+       }
+       pl353_nand_read_buf_l(chip, p,
+               (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH));
+       p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+
+       /* Set ECC Last bit to 1 */
+       data_phase_addr = (unsigned long __force)chip->IO_ADDR_R;
+       data_phase_addr |= PL353_NAND_ECC_LAST;
+       chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;
+       pl353_nand_read_buf_l(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH);
+
+       /* Read the calculated ECC value */
+       p = buf;
+       chip->ecc.calculate(mtd, p, &ecc_calc[0]);
+
+       /* Clear ECC last bit */
+       data_phase_addr = (unsigned long __force)chip->IO_ADDR_R;
+       data_phase_addr &= ~PL353_NAND_ECC_LAST;
+       chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;
+
+       /* Read the stored ECC value */
+       oob_ptr = chip->oob_poi;
+       pl353_nand_read_buf_l(chip, oob_ptr,
+               (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH));
+
+       /* de-assert chip select */
+       data_phase_addr = (unsigned long __force)chip->IO_ADDR_R;
+       data_phase_addr |= PL353_NAND_CLEAR_CS;
+       chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;
+
+       oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+       pl353_nand_read_buf_l(chip, oob_ptr,  PL353_NAND_LAST_TRANSFER_LENGTH);
+
+       ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
+                                                chip->ecc.total);
+       if (ret)
+               return ret;
+
+       eccsteps = chip->ecc.steps;
+       p = buf;
+
+       /* Check ECC error for all blocks and correct if it is correctable */
+       for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+               stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+               if (stat < 0)
+                       mtd->ecc_stats.failed++;
+               else
+                       mtd->ecc_stats.corrected += stat;
+       }
+       return 0;
+}
+
+/**
+ * pl353_nand_read_page_swecc - [REPLACEABLE] software ecc based page read
+ *                             function
+ * @mtd:               Pointer to the mtd info structure
+ * @chip:              Pointer to the NAND chip info structure
+ * @buf:               Pointer to the buffer to store read data
+ * @oob_required:      Caller requires OOB data read to chip->oob_poi
+ * @page:              Page number to read
+ *
+ * Return:     Always return zero
+ */
+static int pl353_nand_read_page_swecc(struct mtd_info *mtd,
+                                    struct nand_chip *chip,
+                                    uint8_t *buf,  int oob_required, int page)
+{
+       int i, eccsize = chip->ecc.size;
+       int eccbytes = chip->ecc.bytes;
+       int eccsteps = chip->ecc.steps;
+       uint8_t *p = buf;
+       uint8_t *ecc_calc = chip->ecc.calc_buf;
+       uint8_t *ecc_code = chip->ecc.code_buf;
+       u32 ret;
+
+       chip->ecc.read_page_raw(mtd, chip, buf, page, 1);
+
+       for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
+               chip->ecc.calculate(mtd, p, &ecc_calc[i]);
+
+       ret = mtd_ooblayout_get_eccbytes(mtd, ecc_calc, chip->oob_poi,
+                                               0, chip->ecc.total);
+
+       eccsteps = chip->ecc.steps;
+       p = buf;
+
+       for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+               int stat;
+
+               stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
+               if (stat < 0)
+                       mtd->ecc_stats.failed++;
+               else
+                       mtd->ecc_stats.corrected += stat;
+       }
+       return 0;
+}
+
+/**
+ * pl353_nand_select_chip - Select the flash device
+ * @mtd:       Pointer to the mtd info structure
+ * @chip:      Pointer to the NAND chip info structure
+ *
+ * This function is empty as the NAND controller handles chip select line
+ * internally based on the chip address passed in command and data phase.
+ */
+static void pl353_nand_select_chip(struct mtd_info *mtd, int chip)
+{
+}
+
+/* NAND framework ->exec_op() hooks and related helpers */
+static void pl353_nfc_parse_instructions(struct nand_chip *chip,
+                                          const struct nand_subop *subop,
+                                          struct pl353_nfc_op *nfc_op)
+{
+       const struct nand_op_instr *instr = NULL;
+       unsigned int op_id, offset, naddrs;
+       int i;
+       const u8 *addrs;
+
+       memset(nfc_op, 0, sizeof(struct pl353_nfc_op));
+       for (op_id = 0; op_id < subop->ninstrs; op_id++) {
+
+               nfc_op->len = nand_subop_get_data_len(subop, op_id);
+
+               instr = &subop->instrs[op_id];
+               if (subop->ninstrs == 1)
+                       nfc_op->cmnds[0] = -1;
+               switch (instr->type) {
+               case NAND_OP_CMD_INSTR:
+                       nfc_op->type = NAND_OP_CMD_INSTR;
+                       nfc_op->end_cmd = op_id - 1;
+                       if (op_id)
+                               nfc_op->cmnds[1] = instr->ctx.cmd.opcode;
+                       else {
+                               nfc_op->cmnds[0] = instr->ctx.cmd.opcode;
+                               nfc_op->cmnds[1] = -1;
+                       }
+                       break;
+
+               case NAND_OP_ADDR_INSTR:
+                       offset = nand_subop_get_addr_start_off(subop, op_id);
+                       naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
+                       addrs = &instr->ctx.addr.addrs[offset];
+                       nfc_op->addrs = instr->ctx.addr.addrs[offset];
+                       for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
+                               nfc_op->addrs |= instr->ctx.addr.addrs[i] <<
+                                                (8 * i);
+
+                       if (naddrs >= 5) {
+                               nfc_op->addrs >>= 16;
+                               nfc_op->addrs |= (addrs[4] << 16);
+                               nfc_op->thirdrow = 1;
+                       }
+                       nfc_op->naddrs = nand_subop_get_num_addr_cyc
+                                               (subop, op_id);
+                       break;
+
+               case NAND_OP_DATA_IN_INSTR:
+                       nfc_op->data_instr = instr;
+                       nfc_op->type = NAND_OP_DATA_IN_INSTR;
+                       nfc_op->data_instr_idx = op_id;
+                       break;
+
+               case NAND_OP_DATA_OUT_INSTR:
+                       nfc_op->data_instr = instr;
+                       nfc_op->type = NAND_OP_DATA_IN_INSTR;
+                       nfc_op->data_instr_idx = op_id;
+                       break;
+
+               case NAND_OP_WAITRDY_INSTR:
+                       nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
+                       nfc_op->rdy_delay_ns = instr->delay_ns;
+                       nfc_op->wait = true;
+                       break;
+               }
+       }
+}
+
+/**
+ * pl353_nand_cmd_function - Send command to NAND device
+ * @chip:      Pointer to the NAND chip info structure
+ * @subop:     Pointer to array of instructions
+ * Return:     Always return zero
+ */
+static int pl353_nand_cmd_function(struct nand_chip *chip,
+                                             const struct nand_subop *subop)
+{
+       struct mtd_info *mtd = nand_to_mtd(chip);
+       const struct nand_op_instr *instr;
+       struct pl353_nfc_op nfc_op;
+       struct pl353_nand_info *xnand =
+               container_of(chip, struct pl353_nand_info, chip);
+       void __iomem *cmd_addr;
+       unsigned long cmd_data = 0, end_cmd_valid = 0;
+       unsigned long cmd_phase_addr, data_phase_addr, end_cmd;
+       unsigned long timeout = jiffies + PL353_NAND_DEV_BUSY_TIMEOUT;
+       u32 addrcycles = 0;
+       unsigned int op_id, len, offset;
+
+       pl353_nfc_parse_instructions(chip, subop, &nfc_op);
+       instr = nfc_op.data_instr;
+       op_id = nfc_op.data_instr_idx;
+       len = nand_subop_get_data_len(subop, op_id);
+       offset = nand_subop_get_data_start_off(subop, op_id);
+
+       if (nfc_op.cmnds[0] != -1) {
+               if (xnand->end_cmd_pending) {
+                       /*
+                        * Check for end command if this command request is
+                        * same as the pending command then return
+                        */
+                       if (xnand->end_cmd == nfc_op.cmnds[0]) {
+                               xnand->end_cmd = 0;
+                               xnand->end_cmd_pending = 0;
+                               return 0;
+                       }
+               }
+
+               /* Clear interrupt */
+               pl353_smc_clr_nand_int();
+               end_cmd_valid = 0;
+               /* Get the command phase address */
+               if (nfc_op.cmnds[1] != -1) {
+                       end_cmd_valid = 1;
+               } else {
+                       if (nfc_op.cmnds[0] == NAND_CMD_READ0)
+                               return 0;
+               }
+               if (nfc_op.end_cmd == NAND_CMD_NONE)
+                       end_cmd = 0x0;
+               else
+                       end_cmd = nfc_op.cmnds[1];
+
+               addrcycles = nfc_op.naddrs;
+               if (nfc_op.cmnds[0] == NAND_CMD_READ0 ||
+                       nfc_op.cmnds[0] == NAND_CMD_SEQIN)
+                       addrcycles = xnand->row_addr_cycles +
+                                       xnand->col_addr_cycles;
+               else if ((nfc_op.cmnds[0] == NAND_CMD_ERASE1) ||
+                       (nfc_op.cmnds[0] == NAND_CMD_ERASE2))
+                       addrcycles = xnand->row_addr_cycles;
+               else
+                       addrcycles = nfc_op.naddrs;
+               cmd_phase_addr = (unsigned long __force)xnand->nand_base + (
+                                (addrcycles << ADDR_CYCLES_SHIFT)      |
+                                (end_cmd_valid << END_CMD_VALID_SHIFT) |
+                                (COMMAND_PHASE)                        |
+                                (end_cmd << END_CMD_SHIFT)             |
+                                (nfc_op.cmnds[0] << START_CMD_SHIFT));
+
+               cmd_addr = (void __iomem * __force)cmd_phase_addr;
+               /* Get the data phase address */
+               end_cmd_valid = 0;
+
+               data_phase_addr = (unsigned long __force)xnand->nand_base + (
+                                 (0x0 << CLEAR_CS_SHIFT)               |
+                                 (end_cmd_valid << END_CMD_VALID_SHIFT)|
+                                 (DATA_PHASE)                          |
+                                 (end_cmd << END_CMD_SHIFT)            |
+                                 (0x0 << ECC_LAST_SHIFT));
+               chip->IO_ADDR_R = (void __iomem * __force)data_phase_addr;
+               chip->IO_ADDR_W = chip->IO_ADDR_R;
+               /* Command phase AXI write */
+               /* Read & Write */
+               if (nfc_op.thirdrow) {
+                       nfc_op.thirdrow = 0;
+                       if (mtd->writesize > PL353_NAND_ECC_SIZE) {
+                               cmd_data |= nfc_op.addrs << 16;
+                               /* Another address cycle for devices > 128MiB */
+                               if (chip->chipsize > (128 << 20)) {
+                                       pl353_nand_write32(cmd_addr, cmd_data);
+                                       cmd_data = (nfc_op.addrs >> 16);
+                               }
+                       }
+               }  else {
+                       if (nfc_op.addrs != -1) {
+                               int column = nfc_op.addrs;
+                               /*
+                                * Change read/write column, read id etc
+                                * Adjust columns for 16 bit bus width
+                                */
+                               if ((chip->options & NAND_BUSWIDTH_16) &&
+                               ((nfc_op.cmnds[0] == NAND_CMD_READ0) ||
+                               (nfc_op.cmnds[0] == NAND_CMD_SEQIN) ||
+                               (nfc_op.cmnds[0] == NAND_CMD_RNDOUT) ||
+                               (nfc_op.cmnds[0] == NAND_CMD_RNDIN))) {
+                                       column >>= 1;
+                               }
+                               cmd_data = nfc_op.addrs;
+                       }
+               }
+               pl353_nand_write32(cmd_addr, cmd_data);
+               if (nfc_op.type != 0) {
+                       xnand->end_cmd = nfc_op.end_cmd;
+                       xnand->end_cmd_pending = 1;
+               }
+               ndelay(100);
+               if (nfc_op.cmnds[0] == 0xef)
+                       nfc_op.wait = false;
+               if (nfc_op.wait) {
+                       nfc_op.wait = false;
+                       do {
+                               if (chip->dev_ready(mtd))
+                                       break;
+                               cpu_relax();
+                       } while (!time_after_eq(jiffies, timeout));
+                       if (time_after_eq(jiffies, timeout)) {
+                               pr_err("%s timed out\n", __func__);
+                               return -ETIMEDOUT;
+                       }
+                       return 0;
+               }
+       }
+
+       if (instr == NULL)
+               return 0;
+       if (instr->type == NAND_OP_DATA_IN_INSTR)
+               return pl353_nand_read_buf(chip, instr->ctx.data.buf.in, len);
+
+       if (instr->type == NAND_OP_DATA_OUT_INSTR) {
+               if ((nfc_op.cmnds[0] == NAND_CMD_PAGEPROG) ||
+                       (nfc_op.cmnds[0] == NAND_CMD_SEQIN))
+                       pl353_nand_write_page_raw(mtd, chip,
+                       instr->ctx.data.buf.out, 0, nfc_op.addrs);
+               else
+                       pl353_nand_write_buf_l(chip, instr->ctx.data.buf.out,
+                               len);
+               return 0;
+       }
+       return 0;
+}
+
+static const struct nand_op_parser pl353_nfc_op_parser = NAND_OP_PARSER(
+       NAND_OP_PARSER_PATTERN(
+               pl353_nand_cmd_function,
+               NAND_OP_PARSER_PAT_CMD_ELEM(false),
+               NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7),
+               NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
+        NAND_OP_PARSER_PATTERN(
+               pl353_nand_cmd_function,
+               NAND_OP_PARSER_PAT_CMD_ELEM(false),
+               NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7),
+               NAND_OP_PARSER_PAT_CMD_ELEM(false),
+               NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
+       NAND_OP_PARSER_PATTERN(
+               pl353_nand_cmd_function,
+               NAND_OP_PARSER_PAT_CMD_ELEM(false),
+               NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
+        NAND_OP_PARSER_PATTERN(
+               pl353_nand_cmd_function,
+               NAND_OP_PARSER_PAT_CMD_ELEM(false),
+               NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7),
+               NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
+       NAND_OP_PARSER_PATTERN(
+               pl353_nand_cmd_function,
+               NAND_OP_PARSER_PAT_CMD_ELEM(false),
+               NAND_OP_PARSER_PAT_ADDR_ELEM(false, 8),
+               NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2048),
+               NAND_OP_PARSER_PAT_CMD_ELEM(true),
+               NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
+       NAND_OP_PARSER_PATTERN(
+               pl353_nand_cmd_function,
+               NAND_OP_PARSER_PAT_CMD_ELEM(false),
+               NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
+       NAND_OP_PARSER_PATTERN(
+               pl353_nand_cmd_function,
+               NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 2048)),
+       NAND_OP_PARSER_PATTERN(
+               pl353_nand_cmd_function,
+               NAND_OP_PARSER_PAT_CMD_ELEM(false)),
+       );
+
+static int pl353_nfc_exec_op(struct nand_chip *chip,
+                              const struct nand_operation *op,
+                              bool check_only)
+{
+       return nand_op_parser_exec_op(chip, &pl353_nfc_op_parser,
+                                             op, check_only);
+}
+
+/**
+ * pl353_nand_device_ready - Check device ready/busy line
+ * @mtd:       Pointer to the mtd_info structure
+ *
+ * Return:     0 on busy or 1 on ready state
+ */
+static int pl353_nand_device_ready(struct mtd_info *mtd)
+{
+       if (pl353_smc_get_nand_int_status_raw()) {
+               pl353_smc_clr_nand_int();
+               return 1;
+       }
+       return 0;
+}
+
+/**
+ * pl353_nand_ecc_init - Initialize the ecc information as per the ecc mode
+ * @mtd:       Pointer to the mtd_info structure
+ * @ecc:       Pointer to ECC control structure
+ * @ecc_mode:  ondie ecc status
+ *
+ * This function initializes the ecc block and functional pointers as per the
+ * ecc mode
+ */
+static void pl353_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl 
*ecc,
+       int ecc_mode)
+{
+       struct nand_chip *chip = mtd_to_nand(mtd);
+
+       ecc->read_oob = pl353_nand_read_oob;
+       ecc->read_page_raw = pl353_nand_read_page_raw;
+       ecc->write_oob = pl353_nand_write_oob;
+       ecc->write_page_raw = pl353_nand_write_page_raw;
+
+       if (ecc_mode == NAND_ECC_ON_DIE) {
+               pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_BYPASS);
+
+               /*
+                * The software ECC routines won't work with the
+                * SMC controller
+                */
+               ecc->read_page = pl353_nand_read_page_raw;
+               ecc->write_page = pl353_nand_write_page_raw;
+               /*
+                * On-Die ECC spare bytes offset 8 is used for ECC codes
+                * Use the BBT pattern descriptors
+                */
+               chip->bbt_td = &bbt_main_descr;
+               chip->bbt_md = &bbt_mirror_descr;
+       } else {
+               ecc->mode = NAND_ECC_HW;
+               /* Hardware ECC generates 3 bytes ECC code for each 512 bytes */
+               ecc->bytes = 3;
+               ecc->strength = 1;
+               ecc->calculate = pl353_nand_calculate_hwecc;
+               ecc->correct = pl353_nand_correct_data;
+               ecc->hwctl = NULL;
+               ecc->read_page = pl353_nand_read_page_hwecc;
+               ecc->size = PL353_NAND_ECC_SIZE;
+               ecc->write_page = pl353_nand_write_page_hwecc;
+               pl353_smc_set_ecc_pg_size(mtd->writesize);
+               switch (mtd->writesize) {
+               case 512:
+               case 1024:
+               case 2048:
+                       pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_APB);
+                       break;
+               default:
+                       /*
+                        * The software ECC routines won't work with the
+                        * SMC controller
+                        */
+                       ecc->calculate = nand_calculate_ecc;
+                       ecc->correct = nand_correct_data;
+                       ecc->read_page = pl353_nand_read_page_swecc;
+                       ecc->write_page = pl353_nand_write_page_swecc;
+                       ecc->size = 256;
+                       break;
+               }
+
+               if (mtd->oobsize == 16)
+                       mtd_set_ooblayout(mtd, &pl353_ecc_ooblayout16_ops);
+               else if (mtd->oobsize == 64)
+                       mtd_set_ooblayout(mtd, &pl353_ecc_ooblayout64_ops);
+       }
+}
+
+/**
+ * pl353_nand_probe - Probe method for the NAND driver
+ * @pdev:      Pointer to the platform_device structure
+ *
+ * This function initializes the driver data structures and the hardware.
+ *
+ * Return:     0 on success or error value on failure
+ */
+static int pl353_nand_probe(struct platform_device *pdev)
+{
+       struct pl353_nand_info *xnand;
+       struct mtd_info *mtd;
+       struct nand_chip *nand_chip;
+       struct resource *res;
+
+       xnand = devm_kzalloc(&pdev->dev, sizeof(*xnand), GFP_KERNEL);
+       if (!xnand)
+               return -ENOMEM;
+
+       /* Map physical address of NAND flash */
+       res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+       xnand->nand_base = devm_ioremap_resource(&pdev->dev, res);
+       if (IS_ERR(xnand->nand_base))
+               return PTR_ERR(xnand->nand_base);
+
+       nand_chip = &xnand->chip;
+       mtd = nand_to_mtd(nand_chip);
+       nand_chip->exec_op = pl353_nfc_exec_op;
+       nand_set_controller_data(nand_chip, xnand);
+       mtd->priv = nand_chip;
+       mtd->owner = THIS_MODULE;
+       mtd->name = PL353_NAND_DRIVER_NAME;
+       nand_set_flash_node(nand_chip, pdev->dev.of_node);
+
+       /* Set address of NAND IO lines */
+       nand_chip->IO_ADDR_R = xnand->nand_base;
+       nand_chip->IO_ADDR_W = xnand->nand_base;
+       /* Set the driver entry points for MTD */
+       nand_chip->dev_ready = pl353_nand_device_ready;
+       nand_chip->select_chip = pl353_nand_select_chip;
+       /* If we don't set this delay driver sets 20us by default */
+       nand_chip->chip_delay = 30;
+
+       /* Set the device option and flash width */
+       nand_chip->options = NAND_BUSWIDTH_AUTO;
+       nand_chip->bbt_options = NAND_BBT_USE_FLASH;
+       platform_set_drvdata(pdev, xnand);
+
+       /* first scan to find the device and get the page size */
+       if (nand_scan_ident(mtd, 1, NULL)) {
+               dev_err(&pdev->dev, "nand_scan_ident for NAND failed\n");
+               return -ENXIO;
+       }
+
+       xnand->row_addr_cycles = nand_chip->onfi_params.addr_cycles & 0xF;
+       xnand->col_addr_cycles =
+                               (nand_chip->onfi_params.addr_cycles >> 4) & 0xF;
+
+       pl353_nand_ecc_init(mtd, &nand_chip->ecc, nand_chip->ecc.mode);
+       if (nand_chip->options & NAND_BUSWIDTH_16)
+               pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_16);
+       /* second phase scan */
+       if (nand_scan_tail(mtd)) {
+               dev_err(&pdev->dev, "nand_scan_tail for NAND failed\n");
+               return -ENXIO;
+       }
+
+       mtd_device_register(mtd, NULL, 0);
+
+       return 0;
+}
+
+/**
+ * pl353_nand_remove - Remove method for the NAND driver
+ * @pdev:      Pointer to the platform_device structure
+ *
+ * This function is called if the driver module is being unloaded. It frees all
+ * resources allocated to the device.
+ *
+ * Return:     0 on success or error value on failure
+ */
+static int pl353_nand_remove(struct platform_device *pdev)
+{
+       struct pl353_nand_info *xnand = platform_get_drvdata(pdev);
+       struct mtd_info *mtd = nand_to_mtd(&xnand->chip);
+
+       /* Release resources, unregister device */
+       nand_release(mtd);
+
+       return 0;
+}
+
+/* Match table for device tree binding */
+static const struct of_device_id pl353_nand_of_match[] = {
+       { .compatible = "arm,pl353-nand-r2p1" },
+       {},
+};
+MODULE_DEVICE_TABLE(of, pl353_nand_of_match);
+
+/*
+ * pl353_nand_driver - This structure defines the NAND subsystem platform 
driver
+ */
+static struct platform_driver pl353_nand_driver = {
+       .probe          = pl353_nand_probe,
+       .remove         = pl353_nand_remove,
+       .driver         = {
+               .name   = PL353_NAND_DRIVER_NAME,
+               .of_match_table = pl353_nand_of_match,
+       },
+};
+
+module_platform_driver(pl353_nand_driver);
+
+MODULE_AUTHOR("Xilinx, Inc.");
+MODULE_ALIAS("platform:" PL353_NAND_DRIVER_NAME);
+MODULE_DESCRIPTION("ARM PL353 NAND Flash Driver");
+MODULE_LICENSE("GPL");
-- 
2.7.4

Reply via email to