Add driver for arm pl353 static memory controller nand interface with HW ECC
support. This controller is used in Xilinx Zynq SoC for interfacing the NAND
flash memory.

Signed-off-by: Naga Sureshkumar Relli <naga.sureshkumar.re...@xilinx.com>
---
Changes in v11:
 - Removed Documentation patch and added the required info in driver as
   per Boris comments.
 - Removed unwanted variables from pl353_nand_info as per Miquel comments
 - Removed IO_ADDR_R/W.
 - Replaced onhot() with hweight32()
 - Defined macros for static values in function pl353_nand_correct_data()
 - Removed all unnecessary delays
 - Used nand_wait_ready() where ever is required
 - Modifed the pl353_setup_data_interface() logic as per Miquel comments.
 - Taken array instead of 7 values in pl353_setup_data_interface() and pass
   it to smc driver.
 - Added check to collect the return value of mtd_device_register().
Changes in 10:
 - Typos correction like nand to NAND and soc to SOC etc..
 - Defined macros for the values in pl353_nand_calculate_hwecc()
 - Modifed ecc_status from int to char in pl353_nand_calculate_hwecc()
 - Changed the return type form int to bool to the function
   onehot()
 - Removed udelay(1000) in pl353_cmd_function, as it is not required
 - Dropped ecc->hwctl = NULL in pl353_ecc_init()
 - Added an error message in pl353_ecc_init(), when there is no matching
   oobsize
 - Changed the variable from xnand to xnfc
 - Added logic to get mtd->name from DT, if it is specified in DT
Changes in v9:
 - Addressed the below comments given by Miquel
 - instead of using pl353_nand_write32, use directly writel_relaxed
 - Fixed check patch warnings
 - Renamed write_buf/read_buf to write_data_op/read_data_op
 - use BIT macro instead of 1 << nr
 - Use NAND_ROW_ADDR_3 flag
 - Use nand_wait_ready()
 - Removed swecc functions
 - Use address cycles as per size, instead of reading it from Parameter page
 - Instead of writing too many patterns, use optional property
Changes in v8:
 - Added exec_op() implementation
 - Fixed the below v7 review comments
 - removed mtd_info from pl353_nand_info struct
 - Corrected ecc layout offsets
 - Added on-die ecc support
Changes in v7:
 - Currently not implemented the memclk rate adjustments. I will
   look into this later and once the basic driver is accepted.
 - Fixed GPL licence ident
Changes in v6:
 - Fixed the checkpatch.pl reported warnings
 - Using the address cycles information from the onfi param page
   earlier it is hardcoded to 5 in driver
Changes in v5:
 - Configure the nand timing parameters as per the onfi spec Changes in v4:
 - Updated the driver to sync with pl353_smc driver APIs
Changes in v3:
 - implemented the proper error codes
 - further breakdown this patch to multiple sets
 - added the controller and driver details to Documentation section
 - updated the licenece to GPLv2
 - reorganized the pl353_nand_ecc_init function
Changes in v2:
 - use "depends on" rather than "select" option in kconfig
 - remove unused variable parts
---
 drivers/mtd/nand/raw/Kconfig      |    7 +
 drivers/mtd/nand/raw/Makefile     |    1 +
 drivers/mtd/nand/raw/pl353_nand.c | 1314 +++++++++++++++++++++++++++++++++++++
 3 files changed, 1322 insertions(+)
 create mode 100644 drivers/mtd/nand/raw/pl353_nand.c

diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
index 6871ff0..1c5d528 100644
--- a/drivers/mtd/nand/raw/Kconfig
+++ b/drivers/mtd/nand/raw/Kconfig
@@ -530,4 +530,11 @@ config MTD_NAND_MTK
          Enables support for NAND controller on MTK SoCs.
          This controller is found on mt27xx, mt81xx, mt65xx SoCs.
 
+config MTD_NAND_PL353
+       tristate "ARM Pl353 NAND flash driver"
+       depends on MTD_NAND && ARM
+       depends on PL353_SMC
+       help
+         Enables support for PrimeCell Static Memory Controller PL353.
+
 endif # MTD_NAND
diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
index 165b7ef..1c702e1 100644
--- a/drivers/mtd/nand/raw/Makefile
+++ b/drivers/mtd/nand/raw/Makefile
@@ -56,6 +56,7 @@ obj-$(CONFIG_MTD_NAND_HISI504)                += 
hisi504_nand.o
 obj-$(CONFIG_MTD_NAND_BRCMNAND)                += brcmnand/
 obj-$(CONFIG_MTD_NAND_QCOM)            += qcom_nandc.o
 obj-$(CONFIG_MTD_NAND_MTK)             += mtk_ecc.o mtk_nand.o
+obj-$(CONFIG_MTD_NAND_PL353)           += pl353_nand.o
 
 nand-objs := nand_base.o nand_bbt.o nand_timings.o nand_ids.o
 nand-objs += nand_amd.o
diff --git a/drivers/mtd/nand/raw/pl353_nand.c 
b/drivers/mtd/nand/raw/pl353_nand.c
new file mode 100644
index 0000000..3fa9ba07
--- /dev/null
+++ b/drivers/mtd/nand/raw/pl353_nand.c
@@ -0,0 +1,1314 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * ARM PL353 NAND flash controller driver
+ *
+ * Copyright (C) 2017 Xilinx, Inc
+ * Author: Punnaiah chowdary kalluri <punna...@xilinx.com>
+ * Author: Naga Sureshkumar Relli <nagas...@xilinx.com>
+ *
+ */
+
+#include <linux/err.h>
+#include <linux/delay.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/ioport.h>
+#include <linux/irq.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/partitions.h>
+#include <linux/of_address.h>
+#include <linux/of_device.h>
+#include <linux/of_platform.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+#include <linux/pl353-smc.h>
+#include <linux/clk.h>
+
+#define PL353_NAND_DRIVER_NAME "pl353-nand"
+
+/* NAND flash driver defines */
+#define PL353_NAND_CMD_PHASE   1       /* End command valid in command phase */
+#define PL353_NAND_DATA_PHASE  2       /* End command valid in data phase */
+#define PL353_NAND_ECC_SIZE    512     /* Size of data for ECC operation */
+
+/* Flash memory controller operating parameters */
+
+#define PL353_NAND_ECC_CONFIG  (BIT(4)  |      /* ECC read at end of page */ \
+                                (0 << 5))      /* No Jumping */
+
+/* AXI Address definitions */
+#define START_CMD_SHIFT                3
+#define END_CMD_SHIFT          11
+#define END_CMD_VALID_SHIFT    20
+#define ADDR_CYCLES_SHIFT      21
+#define CLEAR_CS_SHIFT         21
+#define ECC_LAST_SHIFT         10
+#define COMMAND_PHASE          (0 << 19)
+#define DATA_PHASE             BIT(19)
+
+#define PL353_NAND_ECC_LAST    BIT(ECC_LAST_SHIFT)     /* Set ECC_Last */
+#define PL353_NAND_CLEAR_CS    BIT(CLEAR_CS_SHIFT)     /* Clear chip select */
+
+#define ONDIE_ECC_FEATURE_ADDR 0x90
+#define PL353_NAND_ECC_BUSY_TIMEOUT    (1 * HZ)
+#define PL353_NAND_DEV_BUSY_TIMEOUT    (1 * HZ)
+#define PL353_NAND_LAST_TRANSFER_LENGTH        4
+#define PL353_NAND_ECC_VALID_SHIFT     24
+#define PL353_NAND_ECC_VALID_MASK      0x40
+#define PL353_ECC_BITS_BYTEOFF_MASK    0x1FF
+#define PL353_ECC_BITS_BITOFF_MASK     0x7
+#define PL353_ECC_BIT_MASK             0xFFF
+#define PL353_TREA_MAX_VALUE           1
+
+struct pl353_nfc_op {
+       u32 cmnds[4];
+       u32 thirdrow;
+       u32 type;
+       u32 end_cmd;
+       u32 addrs;
+       u32 len;
+       u32 naddrs;
+       u32 addr5;
+       u32 addr6;
+       unsigned int data_instr_idx;
+       unsigned int rdy_timeout_ms;
+       unsigned int rdy_delay_ns;
+       unsigned int cle_ale_delay_ns;
+       const struct nand_op_instr *data_instr;
+};
+
+/**
+ * struct pl353_nand_info - Defines the NAND flash driver instance
+ * @chip:              NAND chip information structure
+ * @dev:               Parent device (used to print error messages)
+ * @nand_base:         Virtual address of the NAND flash device
+ * @nandaddr:          Virtual address of the NAND flash device for
+ *                     data read/writes
+ * @addr_cycles:       Address cycles
+ * @mclk:              Memory controller clock
+ */
+struct pl353_nand_info {
+       struct nand_chip chip;
+       struct device *dev;
+       void __iomem *nand_base;
+       void __iomem *nandaddr;
+       u8 addr_cycles;
+       struct clk *mclk;
+};
+
+static int pl353_ecc_ooblayout16_ecc(struct mtd_info *mtd, int section,
+                                    struct mtd_oob_region *oobregion)
+{
+       struct nand_chip *chip = mtd_to_nand(mtd);
+
+       if (section >= chip->ecc.steps)
+               return -ERANGE;
+
+       oobregion->offset = (section * chip->ecc.bytes);
+       oobregion->length = chip->ecc.bytes;
+
+       return 0;
+}
+
+static int pl353_ecc_ooblayout16_free(struct mtd_info *mtd, int section,
+                                     struct mtd_oob_region *oobregion)
+{
+       struct nand_chip *chip = mtd_to_nand(mtd);
+
+       if (section >= chip->ecc.steps)
+               return -ERANGE;
+
+       oobregion->offset = (section * chip->ecc.bytes) + 8;
+       oobregion->length = 8;
+
+       return 0;
+}
+
+static const struct mtd_ooblayout_ops pl353_ecc_ooblayout16_ops = {
+       .ecc = pl353_ecc_ooblayout16_ecc,
+       .free = pl353_ecc_ooblayout16_free,
+};
+
+static int pl353_ecc_ooblayout64_ecc(struct mtd_info *mtd, int section,
+                                    struct mtd_oob_region *oobregion)
+{
+       struct nand_chip *chip = mtd_to_nand(mtd);
+
+       if (section >= chip->ecc.steps)
+               return -ERANGE;
+
+       oobregion->offset = (section * chip->ecc.bytes) + 52;
+       oobregion->length = chip->ecc.bytes;
+
+       return 0;
+}
+
+static int pl353_ecc_ooblayout64_free(struct mtd_info *mtd, int section,
+                                     struct mtd_oob_region *oobregion)
+{
+       struct nand_chip *chip = mtd_to_nand(mtd);
+
+       if (section)
+               return -ERANGE;
+
+       if (section >= chip->ecc.steps)
+               return -ERANGE;
+
+       oobregion->offset = (section * chip->ecc.bytes) + 2;
+       oobregion->length = 50;
+
+       return 0;
+}
+
+static const struct mtd_ooblayout_ops pl353_ecc_ooblayout64_ops = {
+       .ecc = pl353_ecc_ooblayout64_ecc,
+       .free = pl353_ecc_ooblayout64_free,
+};
+
+/* Generic flash bbt decriptors */
+static u8 bbt_pattern[] = { 'B', 'b', 't', '0' };
+static u8 mirror_pattern[] = { '1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+       .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+               | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+       .offs = 4,
+       .len = 4,
+       .veroffs = 20,
+       .maxblocks = 4,
+       .pattern = bbt_pattern
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+       .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+               | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+       .offs = 4,
+       .len = 4,
+       .veroffs = 20,
+       .maxblocks = 4,
+       .pattern = mirror_pattern
+};
+
+/**
+ * pl353_nand_read_data_op - read chip data into buffer
+ * @chip:      Pointer to the NAND chip info structure
+ * @in:                Pointer to the buffer to store read data
+ * @len:       Number of bytes to read
+ * Return:     Always return zero
+ */
+static int pl353_nand_read_data_op(struct nand_chip *chip,
+                                  u8 *in,
+                                  unsigned int len)
+{
+       int i;
+       struct pl353_nand_info *xnfc =
+               container_of(chip, struct pl353_nand_info, chip);
+
+       if (IS_ALIGNED((uint32_t)in, sizeof(uint32_t)) &&
+           IS_ALIGNED(len, sizeof(uint32_t))) {
+               u32 *ptr = (u32 *)in;
+
+               len /= 4;
+               for (i = 0; i < len; i++)
+                       ptr[i] = readl(xnfc->nandaddr);
+       } else {
+               for (i = 0; i < len; i++)
+                       in[i] = readb(xnfc->nandaddr);
+       }
+
+       return 0;
+}
+
+/**
+ * pl353_nand_write_buf - write buffer to chip
+ * @mtd:       Pointer to the mtd info structure
+ * @buf:       Pointer to the buffer to store write data
+ * @len:       Number of bytes to write
+ */
+static void pl353_nand_write_data_op(struct mtd_info *mtd, const u8 *buf,
+                                    int len)
+{
+       int i;
+       struct nand_chip *chip = mtd_to_nand(mtd);
+       struct pl353_nand_info *xnfc =
+               container_of(chip, struct pl353_nand_info, chip);
+
+       if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
+           IS_ALIGNED(len, sizeof(uint32_t))) {
+               u32 *ptr = (u32 *)buf;
+
+               len /= 4;
+               for (i = 0; i < len; i++)
+                       writel(ptr[i], xnfc->nandaddr);
+       } else {
+               for (i = 0; i < len; i++)
+                       writeb(buf[i], xnfc->nandaddr);
+       }
+}
+
+/**
+ * pl353_nand_calculate_hwecc - Calculate Hardware ECC
+ * @mtd:       Pointer to the mtd_info structure
+ * @data:      Pointer to the page data
+ * @ecc:       Pointer to the ECC buffer where ECC data needs to be stored
+ *
+ * This function retrieves the Hardware ECC data from the controller and 
returns
+ * ECC data back to the MTD subsystem.
+ * It operates on a number of 512 byte blocks of NAND memory and can be
+ * programmed to store the ECC codes after the data in memory. For writes,
+ * the ECC is written to the spare area of the page. For reads, the result of
+ * a block ECC check are made available to the device driver.
+ *
+ * ------------------------------------------------------------------------
+ * |               n * 512 blocks                  | extra  | ecc    |     |
+ * |                                               | block  | codes  |     |
+ * ------------------------------------------------------------------------
+ *
+ * The ECC calculation uses a simple Hamming code, using 1-bit correction 2-bit
+ * detection. It starts when a valid read or write command with a 512 byte
+ * aligned address is detected on the memory interface.
+ *
+ * Return:     0 on success or error value on failure
+ */
+static int pl353_nand_calculate_hwecc(struct mtd_info *mtd,
+                                     const u8 *data, u8 *ecc)
+{
+       u32 ecc_value;
+       u8 ecc_reg, ecc_byte, ecc_status;
+       unsigned long timeout = jiffies + PL353_NAND_ECC_BUSY_TIMEOUT;
+
+       /* Wait till the ECC operation is complete or timeout */
+       do {
+               if (pl353_smc_ecc_is_busy())
+                       cpu_relax();
+               else
+                       break;
+       } while (!time_after_eq(jiffies, timeout));
+
+       if (time_after_eq(jiffies, timeout)) {
+               pr_err("%s timed out\n", __func__);
+               return -ETIMEDOUT;
+       }
+
+       for (ecc_reg = 0; ecc_reg < 4; ecc_reg++) {
+               /* Read ECC value for each block */
+               ecc_value = pl353_smc_get_ecc_val(ecc_reg);
+               ecc_status = (ecc_value >> PL353_NAND_ECC_VALID_SHIFT);
+               /* ECC value valid */
+               if (ecc_status & PL353_NAND_ECC_VALID_MASK) {
+                       for (ecc_byte = 0; ecc_byte < 3; ecc_byte++) {
+                               /* Copy ECC bytes to MTD buffer */
+                               *ecc = ~ecc_value & 0xFF;
+                               ecc_value = ecc_value >> 8;
+                               ecc++;
+                       }
+               } else {
+                       pr_warn("%s status failed\n", __func__);
+                       return -1;
+               }
+       }
+
+       return 0;
+}
+
+/**
+ * pl353_nand_correct_data - ECC correction function
+ * @mtd:       Pointer to the mtd_info structure
+ * @buf:       Pointer to the page data
+ * @read_ecc:  Pointer to the ECC value read from spare data area
+ * @calc_ecc:  Pointer to the calculated ECC value
+ *
+ * This function corrects the ECC single bit errors & detects 2-bit errors.
+ *
+ * Return:     0 if no ECC errors found
+ *             1 if single bit error found and corrected.
+ *             -1 if multiple uncorrectable ECC errors found.
+ */
+static int pl353_nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
+                                  unsigned char *read_ecc,
+                                  unsigned char *calc_ecc)
+{
+       unsigned char bit_addr;
+       unsigned int byte_addr;
+       unsigned short ecc_odd, ecc_even, read_ecc_lower, read_ecc_upper;
+       unsigned short calc_ecc_lower, calc_ecc_upper;
+
+       read_ecc_lower = (read_ecc[0] | (read_ecc[1] << 8)) &
+                         PL353_ECC_BIT_MASK;
+       read_ecc_upper = ((read_ecc[1] >> 4) | (read_ecc[2] << 4)) &
+                         PL353_ECC_BIT_MASK;
+
+       calc_ecc_lower = (calc_ecc[0] | (calc_ecc[1] << 8)) &
+                         PL353_ECC_BIT_MASK;
+       calc_ecc_upper = ((calc_ecc[1] >> 4) | (calc_ecc[2] << 4)) &
+                         PL353_ECC_BIT_MASK;
+
+       ecc_odd = read_ecc_lower ^ calc_ecc_lower;
+       ecc_even = read_ecc_upper ^ calc_ecc_upper;
+
+       /* no error */
+       if (!ecc_odd && !ecc_even)
+               return 0;
+
+       if (ecc_odd == (~ecc_even & PL353_ECC_BIT_MASK)) {
+               /* bits [11:3] of error code is byte offset */
+               byte_addr = (ecc_odd >> 3) & PL353_ECC_BITS_BYTEOFF_MASK;
+               /* bits [2:0] of error code is bit offset */
+               bit_addr = ecc_odd & PL353_ECC_BITS_BITOFF_MASK;
+               /* Toggling error bit */
+               buf[byte_addr] ^= (BIT(bit_addr));
+               return 1;
+       }
+
+       /* one error in parity */
+       if (hweight32(ecc_odd | ecc_even) == 1)
+               return 1;
+
+       /* Uncorrectable error */
+       return -1;
+}
+
+static void pl353_prepare_cmd(struct mtd_info *mtd, struct nand_chip *chip,
+                             int page, int column, int start_cmd, int end_cmd,
+                             bool read)
+{
+       unsigned long data_phase_addr;
+       u32 end_cmd_valid = 0;
+       unsigned long cmd_phase_addr = 0, cmd_data = 0;
+
+       struct pl353_nand_info *xnfc =
+               container_of(chip, struct pl353_nand_info, chip);
+
+       end_cmd_valid = read ? 1 : 0;
+
+       cmd_phase_addr = (unsigned long __force)xnfc->nand_base +
+                        ((xnfc->addr_cycles
+                        << ADDR_CYCLES_SHIFT) |
+                        (end_cmd_valid << END_CMD_VALID_SHIFT) |
+                        (COMMAND_PHASE) |
+                        (end_cmd << END_CMD_SHIFT) |
+                        (start_cmd << START_CMD_SHIFT));
+
+       /* Get the data phase address */
+       data_phase_addr = (unsigned long __force)xnfc->nand_base +
+                         ((0x0 << CLEAR_CS_SHIFT) |
+                         (0 << END_CMD_VALID_SHIFT) |
+                         (DATA_PHASE) |
+                         (end_cmd << END_CMD_SHIFT) |
+                         (0x0 << ECC_LAST_SHIFT));
+
+       xnfc->nandaddr = (void __iomem * __force)data_phase_addr;
+
+       if (chip->options & NAND_BUSWIDTH_16)
+               column /= 2;
+       cmd_data = column;
+       if (mtd->writesize > PL353_NAND_ECC_SIZE) {
+               cmd_data |= page << 16;
+               /* Another address cycle for devices > 128MiB */
+               if (chip->options & NAND_ROW_ADDR_3) {
+                       writel_relaxed(cmd_data,
+                                      (void __iomem * __force)cmd_phase_addr);
+                       cmd_data = (page >> 16);
+               }
+       } else {
+               cmd_data |= page << 8;
+       }
+
+       writel_relaxed(cmd_data, (void __iomem * __force)cmd_phase_addr);
+}
+
+/**
+ * pl353_nand_read_oob - [REPLACEABLE] the most common OOB data read function
+ * @mtd:       Pointer to the mtd info structure
+ * @chip:      Pointer to the NAND chip info structure
+ * @page:      Page number to read
+ *
+ * Return:     Always return zero
+ */
+static int pl353_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+                              int page)
+{
+       unsigned long data_phase_addr;
+       u8 *p;
+       struct pl353_nand_info *xnfc =
+               container_of(chip, struct pl353_nand_info, chip);
+       unsigned long nand_offset = (unsigned long __force)xnfc->nand_base;
+
+       chip->pagebuf = -1;
+       if (mtd->writesize < PL353_NAND_ECC_SIZE)
+               return 0;
+
+       pl353_prepare_cmd(mtd, chip, page, mtd->writesize, NAND_CMD_READ0,
+                         NAND_CMD_READSTART, 1);
+
+       nand_wait_ready(mtd);
+
+       p = chip->oob_poi;
+       pl353_nand_read_data_op(chip, p,
+                               (mtd->oobsize -
+                               PL353_NAND_LAST_TRANSFER_LENGTH));
+       p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+       data_phase_addr = (unsigned long __force)xnfc->nandaddr;
+       data_phase_addr -= nand_offset;
+       data_phase_addr |= PL353_NAND_CLEAR_CS;
+       data_phase_addr += nand_offset;
+       xnfc->nandaddr = (void __iomem * __force)data_phase_addr;
+       pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH);
+
+       return 0;
+}
+
+/**
+ * pl353_nand_write_oob - [REPLACEABLE] the most common OOB data write function
+ * @mtd:       Pointer to the mtd info structure
+ * @chip:      Pointer to the NAND chip info structure
+ * @page:      Page number to write
+ *
+ * Return:     Zero on success and EIO on failure
+ */
+static int pl353_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+                               int page)
+{
+       const u8 *buf = chip->oob_poi;
+       unsigned long data_phase_addr;
+       struct pl353_nand_info *xnfc =
+               container_of(chip, struct pl353_nand_info, chip);
+       unsigned long nand_offset = (unsigned long __force)xnfc->nand_base;
+       u32 addrcycles = 0;
+
+       chip->pagebuf = -1;
+       addrcycles = xnfc->addr_cycles;
+       pl353_prepare_cmd(mtd, chip, page, mtd->writesize, NAND_CMD_SEQIN,
+                         NAND_CMD_PAGEPROG, 0);
+
+       pl353_nand_write_data_op(mtd, buf,
+                                (mtd->oobsize -
+                                PL353_NAND_LAST_TRANSFER_LENGTH));
+       buf += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+
+       data_phase_addr = (unsigned long __force)xnfc->nandaddr;
+       data_phase_addr -= nand_offset;
+       data_phase_addr |= PL353_NAND_CLEAR_CS;
+       data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
+       data_phase_addr += nand_offset;
+       xnfc->nandaddr = (void __iomem * __force)data_phase_addr;
+       pl353_nand_write_data_op(mtd, buf, PL353_NAND_LAST_TRANSFER_LENGTH);
+       nand_wait_ready(mtd);
+
+       return 0;
+}
+
+/**
+ * pl353_nand_read_page_raw - [Intern] read raw page data without ecc
+ * @mtd:               Pointer to the mtd info structure
+ * @chip:              Pointer to the NAND chip info structure
+ * @buf:               Pointer to the data buffer
+ * @oob_required:      Caller requires OOB data read to chip->oob_poi
+ * @page:              Page number to read
+ *
+ * Return:     Always return zero
+ */
+static int pl353_nand_read_page_raw(struct mtd_info *mtd,
+                                   struct nand_chip *chip,
+                                   u8 *buf, int oob_required, int page)
+{
+       unsigned long data_phase_addr;
+       u8 *p;
+       struct pl353_nand_info *xnfc =
+               container_of(chip, struct pl353_nand_info, chip);
+       unsigned long nand_offset = (unsigned long __force)xnfc->nand_base;
+
+       pl353_nand_read_data_op(chip, buf, mtd->writesize);
+       p = chip->oob_poi;
+       pl353_nand_read_data_op(chip, p,
+                               (mtd->oobsize -
+                               PL353_NAND_LAST_TRANSFER_LENGTH));
+       p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+
+       data_phase_addr = (unsigned long __force)xnfc->nandaddr;
+       data_phase_addr -= nand_offset;
+       data_phase_addr |= PL353_NAND_CLEAR_CS;
+       data_phase_addr += nand_offset;
+       xnfc->nandaddr = (void __iomem * __force)data_phase_addr;
+
+       pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH);
+
+       return 0;
+}
+
+/**
+ * pl353_nand_write_page_raw - [Intern] raw page write function
+ * @mtd:               Pointer to the mtd info structure
+ * @chip:              Pointer to the NAND chip info structure
+ * @buf:               Pointer to the data buffer
+ * @oob_required:      Caller requires OOB data read to chip->oob_poi
+ * @page:              Page number to write
+ *
+ * Return:     Always return zero
+ */
+static int pl353_nand_write_page_raw(struct mtd_info *mtd,
+                                    struct nand_chip *chip,
+                                    const u8 *buf, int oob_required,
+                                    int page)
+{
+       unsigned long data_phase_addr;
+       u8 *p;
+
+       struct pl353_nand_info *xnfc =
+               container_of(chip, struct pl353_nand_info, chip);
+       unsigned long nand_offset = (unsigned long __force)xnfc->nand_base;
+
+       pl353_nand_write_data_op(mtd, buf, mtd->writesize);
+       p = chip->oob_poi;
+       pl353_nand_write_data_op(mtd, p,
+                                (mtd->oobsize -
+                                PL353_NAND_LAST_TRANSFER_LENGTH));
+       p += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+
+       data_phase_addr = (unsigned long __force)xnfc->nandaddr;
+       data_phase_addr -= nand_offset;
+       data_phase_addr |= PL353_NAND_CLEAR_CS;
+       data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
+       data_phase_addr += nand_offset;
+       xnfc->nandaddr = (void __iomem * __force)data_phase_addr;
+       pl353_nand_write_data_op(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH);
+
+       return 0;
+}
+
+/**
+ * nand_write_page_hwecc - Hardware ECC based page write function
+ * @mtd:               Pointer to the mtd info structure
+ * @chip:              Pointer to the NAND chip info structure
+ * @buf:               Pointer to the data buffer
+ * @oob_required:      Caller requires OOB data read to chip->oob_poi
+ * @page:              Page number to write
+ *
+ * This functions writes data and hardware generated ECC values in to the page.
+ *
+ * Return:     Always return zero
+ */
+static int pl353_nand_write_page_hwecc(struct mtd_info *mtd,
+                                      struct nand_chip *chip,
+                                      const u8 *buf, int oob_required,
+                                      int page)
+{
+       int eccsize = chip->ecc.size;
+       int eccsteps = chip->ecc.steps;
+       u8 *ecc_calc = chip->ecc.calc_buf;
+       u8 *oob_ptr;
+       const u8 *p = buf;
+       u32 ret;
+       unsigned long data_phase_addr;
+       struct pl353_nand_info *xnfc =
+               container_of(chip, struct pl353_nand_info, chip);
+       unsigned long nand_offset = (unsigned long __force)xnfc->nand_base;
+
+       pl353_prepare_cmd(mtd, chip, page, 0, NAND_CMD_SEQIN,
+                         NAND_CMD_PAGEPROG, 0);
+
+       for ( ; (eccsteps - 1); eccsteps--) {
+               pl353_nand_write_data_op(mtd, p, eccsize);
+               p += eccsize;
+       }
+       pl353_nand_write_data_op(mtd, p,
+                                (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH));
+       p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+
+       /* Set ECC Last bit to 1 */
+       data_phase_addr = (unsigned long __force)xnfc->nandaddr;
+       data_phase_addr -= nand_offset;
+       data_phase_addr |= PL353_NAND_ECC_LAST;
+       data_phase_addr += nand_offset;
+       xnfc->nandaddr = (void __iomem * __force)data_phase_addr;
+       pl353_nand_write_data_op(mtd, p, PL353_NAND_LAST_TRANSFER_LENGTH);
+
+       p = buf;
+       chip->ecc.calculate(mtd, p, &ecc_calc[0]);
+
+       /* Wait for ECC to be calculated and read the error values */
+       ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi,
+                                        0, chip->ecc.total);
+       if (ret)
+               return ret;
+       /* Clear ECC last bit */
+       data_phase_addr = (unsigned long __force)xnfc->nandaddr;
+       data_phase_addr -= nand_offset;
+       data_phase_addr &= ~PL353_NAND_ECC_LAST;
+       data_phase_addr += nand_offset;
+       xnfc->nandaddr = (void __iomem * __force)data_phase_addr;
+
+       /* Write the spare area with ECC bytes */
+       oob_ptr = chip->oob_poi;
+       pl353_nand_write_data_op(mtd, oob_ptr,
+                                (mtd->oobsize -
+                                PL353_NAND_LAST_TRANSFER_LENGTH));
+
+       data_phase_addr = (unsigned long __force)xnfc->nandaddr;
+       data_phase_addr -= nand_offset;
+       data_phase_addr |= PL353_NAND_CLEAR_CS;
+       data_phase_addr |= (1 << END_CMD_VALID_SHIFT);
+       data_phase_addr += nand_offset;
+       xnfc->nandaddr = (void __iomem * __force)data_phase_addr;
+       oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+       pl353_nand_write_data_op(mtd, oob_ptr, PL353_NAND_LAST_TRANSFER_LENGTH);
+       nand_wait_ready(mtd);
+
+       return 0;
+}
+
+/**
+ * pl353_nand_read_page_hwecc - Hardware ECC based page read function
+ * @mtd:               Pointer to the mtd info structure
+ * @chip:              Pointer to the NAND chip info structure
+ * @buf:               Pointer to the buffer to store read data
+ * @oob_required:      Caller requires OOB data read to chip->oob_poi
+ * @page:              Page number to read
+ *
+ * This functions reads data and checks the data integrity by comparing
+ * hardware generated ECC values and read ECC values from spare area.
+ * There is a limitation in SMC controller, that we must set ECC LAST on
+ * last data phase access, to tell ECC block not to expect any data further.
+ * Ex:  When number of ECC STEPS are 4, then till 3 we will write to flash
+ * using SMC with HW ECC enabled. And for the last ECC STEP, we will subtract
+ * 4bytes from page size, and will initiate a transfer. And the remaining 4 as
+ * one more transfer with ECC_LAST bit set in NAND data phase register to
+ * notify ECC block not to expect any more data. The last block should be align
+ * with end of 512 byte block. Because of this limitation, we are not using
+ * core routines.
+ *
+ * Return:     0 always and updates ECC operation status in to MTD structure
+ */
+static int pl353_nand_read_page_hwecc(struct mtd_info *mtd,
+                                     struct nand_chip *chip,
+                                     u8 *buf, int oob_required, int page)
+{
+       int i, stat, eccsize = chip->ecc.size;
+       int eccbytes = chip->ecc.bytes;
+       int eccsteps = chip->ecc.steps;
+       u8 *p = buf;
+       u8 *ecc_calc = chip->ecc.calc_buf;
+       u8 *ecc = chip->ecc.code_buf;
+       unsigned int max_bitflips = 0;
+       u8 *oob_ptr;
+       u32 ret;
+       unsigned long data_phase_addr;
+       struct pl353_nand_info *xnfc =
+               container_of(chip, struct pl353_nand_info, chip);
+       unsigned long nand_offset = (unsigned long __force)xnfc->nand_base;
+
+       pl353_prepare_cmd(mtd, chip, page, 0, NAND_CMD_READ0,
+                         NAND_CMD_READSTART, 1);
+       nand_wait_ready(mtd);
+
+       for ( ; (eccsteps - 1); eccsteps--) {
+               pl353_nand_read_data_op(chip, p, eccsize);
+               p += eccsize;
+       }
+       pl353_nand_read_data_op(chip, p,
+                               (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH));
+       p += (eccsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+
+       /* Set ECC Last bit to 1 */
+       data_phase_addr = (unsigned long __force)xnfc->nandaddr;
+       data_phase_addr -= nand_offset;
+       data_phase_addr |= PL353_NAND_ECC_LAST;
+       data_phase_addr += nand_offset;
+       xnfc->nandaddr = (void __iomem * __force)data_phase_addr;
+       pl353_nand_read_data_op(chip, p, PL353_NAND_LAST_TRANSFER_LENGTH);
+
+       /* Read the calculated ECC value */
+       p = buf;
+       chip->ecc.calculate(mtd, p, &ecc_calc[0]);
+
+       /* Clear ECC last bit */
+       data_phase_addr = (unsigned long __force)xnfc->nandaddr;
+       data_phase_addr -= nand_offset;
+       data_phase_addr &= ~PL353_NAND_ECC_LAST;
+       data_phase_addr += nand_offset;
+       xnfc->nandaddr = (void __iomem * __force)data_phase_addr;
+
+       /* Read the stored ECC value */
+       oob_ptr = chip->oob_poi;
+       pl353_nand_read_data_op(chip, oob_ptr,
+                               (mtd->oobsize -
+                               PL353_NAND_LAST_TRANSFER_LENGTH));
+
+       /* de-assert chip select */
+       data_phase_addr = (unsigned long __force)xnfc->nandaddr;
+       data_phase_addr -= nand_offset;
+       data_phase_addr |= PL353_NAND_CLEAR_CS;
+       data_phase_addr += nand_offset;
+       xnfc->nandaddr = (void __iomem * __force)data_phase_addr;
+
+       oob_ptr += (mtd->oobsize - PL353_NAND_LAST_TRANSFER_LENGTH);
+       pl353_nand_read_data_op(chip, oob_ptr, PL353_NAND_LAST_TRANSFER_LENGTH);
+
+       ret = mtd_ooblayout_get_eccbytes(mtd, ecc, chip->oob_poi, 0,
+                                        chip->ecc.total);
+       if (ret)
+               return ret;
+
+       eccsteps = chip->ecc.steps;
+       p = buf;
+
+       /* Check ECC error for all blocks and correct if it is correctable */
+       for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
+               stat = chip->ecc.correct(mtd, p, &ecc[i], &ecc_calc[i]);
+               if (stat < 0) {
+                       mtd->ecc_stats.failed++;
+               } else {
+                       mtd->ecc_stats.corrected += stat;
+                       max_bitflips = max_t(unsigned int, max_bitflips, stat);
+               }
+       }
+
+       return max_bitflips;
+}
+
+/**
+ * pl353_nand_select_chip - Select the flash device
+ * @mtd:       Pointer to the mtd info structure
+ * @chip:      Pointer to the NAND chip info structure
+ *
+ * This function is empty as the NAND controller handles chip select line
+ * internally based on the chip address passed in command and data phase.
+ */
+static void pl353_nand_select_chip(struct mtd_info *mtd, int chip)
+{
+}
+
+/* NAND framework ->exec_op() hooks and related helpers */
+static void pl353_nfc_parse_instructions(struct nand_chip *chip,
+                                        const struct nand_subop *subop,
+                                        struct pl353_nfc_op *nfc_op)
+{
+       const struct nand_op_instr *instr = NULL;
+       unsigned int op_id, offset, naddrs;
+       int i, len;
+       const u8 *addrs;
+
+       memset(nfc_op, 0, sizeof(struct pl353_nfc_op));
+       for (op_id = 0; op_id < subop->ninstrs; op_id++) {
+               nfc_op->len = nand_subop_get_data_len(subop, op_id);
+               len = nand_subop_get_data_len(subop, op_id);
+               instr = &subop->instrs[op_id];
+
+               switch (instr->type) {
+               case NAND_OP_CMD_INSTR:
+                       nfc_op->type = NAND_OP_CMD_INSTR;
+                       if (op_id)
+                               nfc_op->cmnds[1] = instr->ctx.cmd.opcode;
+                       else
+                               nfc_op->cmnds[0] = instr->ctx.cmd.opcode;
+                       nfc_op->cle_ale_delay_ns = instr->delay_ns;
+                       break;
+
+               case NAND_OP_ADDR_INSTR:
+                       offset = nand_subop_get_addr_start_off(subop, op_id);
+                       naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
+                       addrs = &instr->ctx.addr.addrs[offset];
+                       nfc_op->addrs = instr->ctx.addr.addrs[offset];
+                       for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) {
+                               nfc_op->addrs |= instr->ctx.addr.addrs[i] <<
+                                                (8 * i);
+                       }
+
+                       if (naddrs >= 5)
+                               nfc_op->addr5 = addrs[4];
+                       if (naddrs >= 6)
+                               nfc_op->addr6 = addrs[5];
+                       nfc_op->naddrs = nand_subop_get_num_addr_cyc(subop,
+                                                                    op_id);
+                       nfc_op->cle_ale_delay_ns = instr->delay_ns;
+                       break;
+
+               case NAND_OP_DATA_IN_INSTR:
+                       nfc_op->data_instr = instr;
+                       nfc_op->type = NAND_OP_DATA_IN_INSTR;
+                       nfc_op->data_instr_idx = op_id;
+                       break;
+
+               case NAND_OP_DATA_OUT_INSTR:
+                       nfc_op->data_instr = instr;
+                       nfc_op->type = NAND_OP_DATA_IN_INSTR;
+                       nfc_op->data_instr_idx = op_id;
+                       break;
+
+               case NAND_OP_WAITRDY_INSTR:
+                       nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
+                       nfc_op->rdy_delay_ns = instr->delay_ns;
+                       break;
+               }
+       }
+}
+
+static void cond_delay(unsigned int ns)
+{
+       if (!ns)
+               return;
+
+       if (ns < 10000)
+               ndelay(ns);
+       else
+               udelay(DIV_ROUND_UP(ns, 1000));
+}
+
+/**
+ * pl353_nand_cmd_function - Send command to NAND device
+ * @chip:      Pointer to the NAND chip info structure
+ * @subop:     Pointer to array of instructions
+ * Return:     Always return zero
+ */
+static int pl353_nand_cmd_function(struct nand_chip *chip,
+                                  const struct nand_subop *subop)
+{
+       struct mtd_info *mtd = nand_to_mtd(chip);
+       const struct nand_op_instr *instr;
+       struct pl353_nfc_op nfc_op = {};
+       struct pl353_nand_info *xnfc =
+               container_of(chip, struct pl353_nand_info, chip);
+       unsigned long cmd_data = 0, end_cmd_valid = 0;
+       unsigned long cmd_phase_addr, data_phase_addr, end_cmd;
+       unsigned int op_id, len, offset;
+       bool reading;
+
+       pl353_nfc_parse_instructions(chip, subop, &nfc_op);
+       instr = nfc_op.data_instr;
+       op_id = nfc_op.data_instr_idx;
+       len = nand_subop_get_data_len(subop, op_id);
+       offset = nand_subop_get_data_start_off(subop, op_id);
+
+       pl353_smc_clr_nand_int();
+       /* Get the command phase address */
+       if (nfc_op.cmnds[1] != 0) {
+               if (nfc_op.cmnds[0] == NAND_CMD_SEQIN)
+                       end_cmd_valid = 0;
+               else
+                       end_cmd_valid = 1;
+               end_cmd = nfc_op.cmnds[1];
+       }  else {
+               end_cmd = 0x0;
+       }
+
+       /*
+        * The SMC defines two phases of commands when transferring data to or
+        * from NAND flash.
+        * Command phase: Commands and optional address information are written
+        * to the NAND flash.The command and address can be associated with
+        * either a data phase operation to write to or read from the array,
+        * or a status/ID register transfer.
+        * Data phase: Data is either written to or read from the NAND flash.
+        * This data can be either data transferred to or from the array,
+        * or status/ID register information.
+        */
+       cmd_phase_addr = (unsigned long __force)xnfc->nand_base +
+                        ((nfc_op.naddrs << ADDR_CYCLES_SHIFT) |
+                        (end_cmd_valid << END_CMD_VALID_SHIFT) |
+                        (COMMAND_PHASE) |
+                        (end_cmd << END_CMD_SHIFT) |
+                        (nfc_op.cmnds[0] << START_CMD_SHIFT));
+
+       /* Get the data phase address */
+       end_cmd_valid = 0;
+
+       data_phase_addr = (unsigned long __force)xnfc->nand_base +
+                         ((0x0 << CLEAR_CS_SHIFT) |
+                         (end_cmd_valid << END_CMD_VALID_SHIFT) |
+                         (DATA_PHASE) |
+                         (end_cmd << END_CMD_SHIFT) |
+                         (0x0 << ECC_LAST_SHIFT));
+       xnfc->nandaddr = (void __iomem * __force)data_phase_addr;
+
+       /* Command phase AXI Read & Write */
+       if (nfc_op.naddrs >= 5) {
+               if (mtd->writesize > PL353_NAND_ECC_SIZE) {
+                       cmd_data = nfc_op.addrs;
+                       /* Another address cycle for devices > 128MiB */
+                       if (chip->options & NAND_ROW_ADDR_3) {
+                               writel_relaxed(cmd_data,
+                                              (void __iomem * __force)
+                                              cmd_phase_addr);
+                               cmd_data = nfc_op.addr5;
+                               if (nfc_op.naddrs >= 6)
+                                       cmd_data |= (nfc_op.addr6 << 8);
+                       }
+               }
+       }  else {
+               if (nfc_op.addrs != -1) {
+                       int column = nfc_op.addrs;
+                       /*
+                        * Change read/write column, read id etc
+                        * Adjust columns for 16 bit bus width
+                        */
+                       if ((chip->options & NAND_BUSWIDTH_16) &&
+                           (nfc_op.cmnds[0] == NAND_CMD_READ0 ||
+                               nfc_op.cmnds[0] == NAND_CMD_SEQIN ||
+                               nfc_op.cmnds[0] == NAND_CMD_RNDOUT ||
+                               nfc_op.cmnds[0] == NAND_CMD_RNDIN)) {
+                               column >>= 1;
+                       }
+                       cmd_data = column;
+               }
+       }
+       writel_relaxed(cmd_data, (void __iomem * __force)cmd_phase_addr);
+
+       if (!nfc_op.data_instr) {
+               if (nfc_op.rdy_timeout_ms)
+                       nand_wait_ready(mtd);
+               return 0;
+       }
+
+       reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
+       if (!reading) {
+               if (nfc_op.cmnds[0] == NAND_CMD_SEQIN &&
+                   nfc_op.cmnds[1] == NAND_CMD_PAGEPROG) {
+                       pl353_nand_write_page_raw(mtd, chip,
+                                                 instr->ctx.data.buf.out, 0,
+                                                 nfc_op.addrs);
+
+               } else {
+                       pl353_nand_write_data_op(mtd, instr->ctx.data.buf.out,
+                                                len);
+               }
+               if (nfc_op.rdy_timeout_ms)
+                       nand_wait_ready(mtd);
+               cond_delay(nfc_op.rdy_delay_ns);
+       }
+       if (reading) {
+               cond_delay(nfc_op.rdy_delay_ns);
+               if (nfc_op.rdy_timeout_ms)
+                       nand_wait_ready(mtd);
+               pl353_nand_read_data_op(chip, instr->ctx.data.buf.in, len);
+       }
+
+       return 0;
+}
+
+static const struct nand_op_parser pl353_nfc_op_parser = NAND_OP_PARSER
+       (NAND_OP_PARSER_PATTERN
+               (pl353_nand_cmd_function,
+               NAND_OP_PARSER_PAT_CMD_ELEM(true),
+               NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7),
+               NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
+               NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 2048)),
+       NAND_OP_PARSER_PATTERN
+               (pl353_nand_cmd_function,
+               NAND_OP_PARSER_PAT_CMD_ELEM(false),
+               NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7),
+               NAND_OP_PARSER_PAT_CMD_ELEM(false),
+               NAND_OP_PARSER_PAT_WAITRDY_ELEM(false),
+               NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 2048)),
+       NAND_OP_PARSER_PATTERN
+               (pl353_nand_cmd_function,
+               NAND_OP_PARSER_PAT_CMD_ELEM(false),
+               NAND_OP_PARSER_PAT_ADDR_ELEM(true, 7),
+               NAND_OP_PARSER_PAT_CMD_ELEM(true),
+               NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
+       NAND_OP_PARSER_PATTERN
+               (pl353_nand_cmd_function,
+               NAND_OP_PARSER_PAT_CMD_ELEM(false),
+               NAND_OP_PARSER_PAT_ADDR_ELEM(false, 8),
+               NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2048),
+               NAND_OP_PARSER_PAT_CMD_ELEM(true),
+               NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
+       NAND_OP_PARSER_PATTERN
+               (pl353_nand_cmd_function,
+               NAND_OP_PARSER_PAT_CMD_ELEM(false)),
+       );
+
+static int pl353_nfc_exec_op(struct nand_chip *chip,
+                            const struct nand_operation *op,
+                            bool check_only)
+{
+       return nand_op_parser_exec_op(chip, &pl353_nfc_op_parser,
+                                             op, check_only);
+}
+
+/**
+ * pl353_nand_device_ready - Check device ready/busy line
+ * @mtd:       Pointer to the mtd_info structure
+ *
+ * Return:     0 on busy or 1 on ready state
+ */
+static int pl353_nand_device_ready(struct mtd_info *mtd)
+{
+       if (pl353_smc_get_nand_int_status_raw()) {
+               pl353_smc_clr_nand_int();
+               return 1;
+       }
+
+       return 0;
+}
+
+/**
+ * pl353_nand_ecc_init - Initialize the ecc information as per the ecc mode
+ * @mtd:       Pointer to the mtd_info structure
+ * @ecc:       Pointer to ECC control structure
+ * @ecc_mode:  ondie ecc status
+ *
+ * This function initializes the ecc block and functional pointers as per the
+ * ecc mode
+ *
+ * Return:     0 on success or negative errno.
+ */
+static int pl353_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc,
+                               int ecc_mode)
+{
+       struct nand_chip *chip = mtd_to_nand(mtd);
+       struct pl353_nand_info *xnfc =
+               container_of(chip, struct pl353_nand_info, chip);
+       int err = 0;
+
+       if (ecc_mode == NAND_ECC_ON_DIE) {
+               pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_BYPASS);
+               /*
+                * On-Die ECC spare bytes offset 8 is used for ECC codes
+                * Use the BBT pattern descriptors
+                */
+               chip->bbt_td = &bbt_main_descr;
+               chip->bbt_md = &bbt_mirror_descr;
+               bitmap_set(chip->parameters.get_feature_list,
+                          ONFI_FEATURE_ON_DIE_ECC, ONFI_FEATURE_ON_DIE_ECC_EN);
+               bitmap_set(chip->parameters.set_feature_list,
+                          ONFI_FEATURE_ON_DIE_ECC, ONFI_FEATURE_ON_DIE_ECC_EN);
+       } else {
+               ecc->read_oob = pl353_nand_read_oob;
+               ecc->write_oob = pl353_nand_write_oob;
+
+               ecc->mode = NAND_ECC_HW;
+               /* Hardware ECC generates 3 bytes ECC code for each 512 bytes */
+               ecc->bytes = 3;
+               ecc->strength = 1;
+               ecc->calculate = pl353_nand_calculate_hwecc;
+               ecc->correct = pl353_nand_correct_data;
+               ecc->read_page = pl353_nand_read_page_hwecc;
+               ecc->size = PL353_NAND_ECC_SIZE;
+               ecc->write_page = pl353_nand_write_page_hwecc;
+               pl353_smc_set_ecc_pg_size(mtd->writesize);
+               switch (mtd->writesize) {
+               case SZ_512:
+               case SZ_1K:
+               case SZ_2K:
+                       pl353_smc_set_ecc_mode(PL353_SMC_ECCMODE_APB);
+                       break;
+               default:
+                       ecc->calculate = nand_calculate_ecc;
+                       ecc->correct = nand_correct_data;
+                       ecc->size = 256;
+                       break;
+               }
+               if (mtd->writesize <= SZ_512)
+                       xnfc->addr_cycles = 1;
+               else
+                       xnfc->addr_cycles = 2;
+
+               if (chip->options & NAND_ROW_ADDR_3)
+                       xnfc->addr_cycles += 3;
+               else
+                       xnfc->addr_cycles += 2;
+
+               if (mtd->oobsize == 16) {
+                       mtd_set_ooblayout(mtd, &pl353_ecc_ooblayout16_ops);
+               } else if (mtd->oobsize == 64) {
+                       mtd_set_ooblayout(mtd, &pl353_ecc_ooblayout64_ops);
+               } else {
+                       err = -ENXIO;
+                       dev_err(xnfc->dev, "Unsupported oob Layout\n");
+               }
+       }
+       return err;
+}
+
+static int pl353_setup_data_interface(struct mtd_info *mtd, int csline,
+                                      const struct nand_data_interface *conf)
+{
+       struct nand_chip *chip = mtd_to_nand(mtd);
+       struct pl353_nand_info *xnfc =
+               container_of(chip, struct pl353_nand_info, chip);
+       const struct nand_sdr_timings *sdr;
+       u32 timings[7], mckperiodps;
+
+       sdr = nand_get_sdr_timings(conf);
+       if (IS_ERR(sdr))
+               return PTR_ERR(sdr);
+
+       /*
+        * SDR timings are given in pico-seconds while NFC timings must be
+        * expressed in NAND controller clock cycles.
+        */
+       mckperiodps = NSEC_PER_SEC / clk_get_rate(xnfc->mclk);
+       mckperiodps *= 1000;
+       if (sdr->tRC_min <= 20000)
+               /*
+                * PL353 SMC needs one extra read cycle in SDR Mode 5
+                * This is not written anywhere in the datasheet but
+                * the results observed during testing.
+                */
+               timings[0] = DIV_ROUND_UP(sdr->tRC_min, mckperiodps) + 1;
+       else
+               timings[0] = DIV_ROUND_UP(sdr->tRC_min, mckperiodps);
+
+       timings[1] = DIV_ROUND_UP(sdr->tWC_min, mckperiodps);
+       /*
+        * For all SDR modes, PL353 SMC needs tREA max value as 1
+        * These results observed during testing.
+        */
+       timings[2] = PL353_TREA_MAX_VALUE;
+       timings[3] = DIV_ROUND_UP(sdr->tWP_min, mckperiodps);
+       timings[4] = DIV_ROUND_UP(sdr->tCLR_min, mckperiodps);
+       timings[5] = DIV_ROUND_UP(sdr->tAR_min, mckperiodps);
+       timings[6] = DIV_ROUND_UP(sdr->tRR_min, mckperiodps);
+
+       if (csline == NAND_DATA_IFACE_CHECK_ONLY)
+               return 0;
+
+       pl353_smc_set_cycles(timings);
+
+       return 0;
+}
+/**
+ * pl353_nand_probe - Probe method for the NAND driver
+ * @pdev:      Pointer to the platform_device structure
+ *
+ * This function initializes the driver data structures and the hardware.
+ * The NAND driver has dependency with the pl353_smc memory controller
+ * driver for initializing the NAND timing parameters, bus width, ECC modes,
+ * control and status information.
+ *
+ * Return:     0 on success or error value on failure
+ */
+static int pl353_nand_probe(struct platform_device *pdev)
+{
+       struct pl353_nand_info *xnfc;
+       struct mtd_info *mtd;
+       struct nand_chip *chip;
+       struct resource *res;
+       struct device_node *np;
+       u32 ret;
+
+       xnfc = devm_kzalloc(&pdev->dev, sizeof(*xnfc), GFP_KERNEL);
+       if (!xnfc)
+               return -ENOMEM;
+       xnfc->dev = &pdev->dev;
+       /* Map physical address of NAND flash */
+       res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+       xnfc->nand_base = devm_ioremap_resource(xnfc->dev, res);
+       if (IS_ERR(xnfc->nand_base))
+               return PTR_ERR(xnfc->nand_base);
+
+       chip = &xnfc->chip;
+       mtd = nand_to_mtd(chip);
+       chip->exec_op = pl353_nfc_exec_op;
+       nand_set_controller_data(chip, xnfc);
+       mtd->priv = chip;
+       mtd->owner = THIS_MODULE;
+       if (!mtd->name) {
+               /*
+                * If the new bindings are used and the bootloader has not been
+                * updated to pass a new mtdparts parameter on the cmdline, you
+                * should define the following property in your NAND node, ie:
+                *
+                *      label = "pl353-nand";
+                *
+                * This way, mtd->name will be set by the core when
+                * nand_set_flash_node() is called.
+                */
+               mtd->name = devm_kasprintf(xnfc->dev, GFP_KERNEL,
+                                          "%s", PL353_NAND_DRIVER_NAME);
+               if (!mtd->name) {
+                       dev_err(xnfc->dev, "Failed to allocate mtd->name\n");
+                       return -ENOMEM;
+               }
+       }
+       nand_set_flash_node(chip, xnfc->dev->of_node);
+
+       /* Set the driver entry points for MTD */
+       chip->dev_ready = pl353_nand_device_ready;
+       chip->select_chip = pl353_nand_select_chip;
+       /* If we don't set this delay driver sets 20us by default */
+       np = of_get_next_parent(xnfc->dev->of_node);
+       xnfc->mclk = of_clk_get(np, 0);
+       if (IS_ERR(xnfc->mclk)) {
+               dev_err(xnfc->dev, "Failed to retrieve MCK clk\n");
+               return PTR_ERR(xnfc->mclk);
+       }
+       chip->chip_delay = 30;
+       /* Set the device option and flash width */
+       chip->options = NAND_BUSWIDTH_AUTO;
+       chip->bbt_options = NAND_BBT_USE_FLASH;
+       platform_set_drvdata(pdev, xnfc);
+       chip->setup_data_interface = pl353_setup_data_interface;
+       /* first scan to find the device and get the page size */
+       if (nand_scan_ident(mtd, 1, NULL)) {
+               dev_err(xnfc->dev, "nand_scan_ident for NAND failed\n");
+               return -ENXIO;
+       }
+       ret = pl353_nand_ecc_init(mtd, &chip->ecc, chip->ecc.mode);
+       if (chip->options & NAND_BUSWIDTH_16)
+               pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_16);
+       /* second phase scan */
+       if (nand_scan_tail(mtd)) {
+               dev_err(xnfc->dev, "nand_scan_tail for NAND failed\n");
+               return -ENXIO;
+       }
+
+       ret = mtd_device_register(mtd, NULL, 0);
+       if (ret) {
+               dev_err(xnfc->dev, "Failed to register mtd device: %d\n", ret);
+               nand_cleanup(chip);
+               return ret;
+       }
+
+       return 0;
+}
+
+/**
+ * pl353_nand_remove - Remove method for the NAND driver
+ * @pdev:      Pointer to the platform_device structure
+ *
+ * This function is called if the driver module is being unloaded. It frees all
+ * resources allocated to the device.
+ *
+ * Return:     0 on success or error value on failure
+ */
+static int pl353_nand_remove(struct platform_device *pdev)
+{
+       struct pl353_nand_info *xnfc = platform_get_drvdata(pdev);
+       struct mtd_info *mtd = nand_to_mtd(&xnfc->chip);
+
+       /* Release resources, unregister device */
+       nand_release(mtd);
+
+       return 0;
+}
+
+/* Match table for device tree binding */
+static const struct of_device_id pl353_nand_of_match[] = {
+       { .compatible = "arm,pl353-nand-r2p1" },
+       {},
+};
+MODULE_DEVICE_TABLE(of, pl353_nand_of_match);
+
+/*
+ * pl353_nand_driver - This structure defines the NAND subsystem platform 
driver
+ */
+static struct platform_driver pl353_nand_driver = {
+       .probe          = pl353_nand_probe,
+       .remove         = pl353_nand_remove,
+       .driver         = {
+               .name   = PL353_NAND_DRIVER_NAME,
+               .of_match_table = pl353_nand_of_match,
+       },
+};
+
+module_platform_driver(pl353_nand_driver);
+
+MODULE_AUTHOR("Xilinx, Inc.");
+MODULE_ALIAS("platform:" PL353_NAND_DRIVER_NAME);
+MODULE_DESCRIPTION("ARM PL353 NAND Flash Driver");
+MODULE_LICENSE("GPL");
-- 
2.7.4

Reply via email to