Add the basic driver for Arasan NAND Flash Controller used in
Zynq UltraScale+ MPSoC. It supports HW ECC and upto 24bit
correction.

Signed-off-by: Naga Sureshkumar Relli <[email protected]>
---
Changes in v10:
 - Implemented ->exec_op() interface.
 - Converted the driver to nand_scan().
Changes in v9:
 - Added the SPDX tags
Changes in v8:
 - Implemented setup_data_interface hook
 - fixed checkpatch --strict warnings
 - Added anfc_config_ecc in read_page_hwecc
 - Fixed returning status value by reading flash status in read_byte()
   instead of reading previous value.
Changes in v7:
- Implemented Marek suggestions and comments
- Corrected the acronyms those should be in caps
- Modified kconfig/Make file to keep arasan entry in sorted order
- Added is_vmlloc_addr check
- Used ioread/write32_rep variants to avoid compilation error for intel
  platforms
- separated PIO and DMA mode read/write functions
- Minor cleanup
Chnages in v6:
- Addressed most of the Brian and Boris comments
- Separated the nandchip from the nand controller
- Removed the ecc lookup table from driver
- Now use framework nand waitfunction and readoob
- Fixed the compiler warning
- Adapted the new frameowrk changes related to ecc and ooblayout
- Disabled the clocks after the nand_reelase
- Now using only one completion object
- Boris suggessions like adapting cmd_ctrl and rework on read/write byte
  are not implemented and i will patch them later
- Also check_erased_ecc_chunk for erase and check for is_vmalloc_addr will
  implement later once the basic driver is mainlined.
Changes in v5:
- Renamed the driver filei as arasan_nand.c
- Fixed all comments relaqted coding style
- Fixed comments related to propagating the errors
- Modified the anfc_write_page_hwecc as per the write_page
  prototype
Changes in v4:
- Added support for onfi timing mode configuration
- Added clock supppport
- Added support for multiple chipselects
Changes in v3:
- Removed unused variables
- Avoided busy loop and used jifies based implementation
- Fixed compiler warnings "right shift count >= width of type"
- Removed unneeded codei and improved error reporting
- Added onfi version check to ensure reading the valid address cycles
Changes in v2:
- Added missing of.h to avoid kbuild system report erro
---
 drivers/mtd/nand/raw/Kconfig       |    8 +
 drivers/mtd/nand/raw/Makefile      |    1 +
 drivers/mtd/nand/raw/arasan_nand.c | 1350 ++++++++++++++++++++++++++++++++++++
 3 files changed, 1359 insertions(+)
 create mode 100644 drivers/mtd/nand/raw/arasan_nand.c

diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig
index b6738ec..1e66f51 100644
--- a/drivers/mtd/nand/raw/Kconfig
+++ b/drivers/mtd/nand/raw/Kconfig
@@ -560,4 +560,12 @@ config MTD_NAND_TEGRA
          is supported. Extra OOB bytes when using HW ECC are currently
          not supported.
 
+config MTD_NAND_ARASAN
+       tristate "Support for Arasan Nand Flash controller"
+       depends on HAS_IOMEM
+       depends on HAS_DMA
+       help
+         Enables the driver for the Arasan Nand Flash controller on
+         Zynq Ultrascale+ MPSoC.
+
 endif # MTD_NAND
diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile
index d5a5f98..ccb8d56 100644
--- a/drivers/mtd/nand/raw/Makefile
+++ b/drivers/mtd/nand/raw/Makefile
@@ -57,6 +57,7 @@ obj-$(CONFIG_MTD_NAND_BRCMNAND)               += brcmnand/
 obj-$(CONFIG_MTD_NAND_QCOM)            += qcom_nandc.o
 obj-$(CONFIG_MTD_NAND_MTK)             += mtk_ecc.o mtk_nand.o
 obj-$(CONFIG_MTD_NAND_TEGRA)           += tegra_nand.o
+obj-$(CONFIG_MTD_NAND_ARASAN)          += arasan_nand.o
 
 nand-objs := nand_base.o nand_bbt.o nand_timings.o nand_ids.o
 nand-objs += nand_amd.o
diff --git a/drivers/mtd/nand/raw/arasan_nand.c 
b/drivers/mtd/nand/raw/arasan_nand.c
new file mode 100644
index 0000000..e4f1f80
--- /dev/null
+++ b/drivers/mtd/nand/raw/arasan_nand.c
@@ -0,0 +1,1350 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Arasan NAND Flash Controller Driver
+ *
+ * Copyright (C) 2014 - 2017 Xilinx, Inc.
+ * Author: Punnaiah Choudary Kalluri <[email protected]>
+ * Author: Naga Sureshkumar Relli <[email protected]>
+ *
+ */
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/dma-mapping.h>
+#include <linux/interrupt.h>
+#include <linux/io-64-nonatomic-lo-hi.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+#define DRIVER_NAME                    "arasan_nand"
+#define EVNT_TIMEOUT_MSEC              1000
+#define STATUS_TIMEOUT                 2000
+
+#define PKT_OFST                       0x00
+#define MEM_ADDR1_OFST                 0x04
+#define MEM_ADDR2_OFST                 0x08
+#define CMD_OFST                       0x0C
+#define PROG_OFST                      0x10
+#define INTR_STS_EN_OFST               0x14
+#define INTR_SIG_EN_OFST               0x18
+#define INTR_STS_OFST                  0x1C
+#define READY_STS_OFST                 0x20
+#define DMA_ADDR1_OFST                 0x24
+#define FLASH_STS_OFST                 0x28
+#define DATA_PORT_OFST                 0x30
+#define ECC_OFST                       0x34
+#define ECC_ERR_CNT_OFST               0x38
+#define ECC_SPR_CMD_OFST               0x3C
+#define ECC_ERR_CNT_1BIT_OFST          0x40
+#define ECC_ERR_CNT_2BIT_OFST          0x44
+#define DMA_ADDR0_OFST                 0x50
+#define DATA_INTERFACE_OFST            0x6C
+
+#define PKT_CNT_SHIFT                  12
+
+#define ECC_ENABLE                     BIT(31)
+#define DMA_EN_MASK                    GENMASK(27, 26)
+#define DMA_ENABLE                     0x2
+#define DMA_EN_SHIFT                   26
+#define REG_PAGE_SIZE_SHIFT            23
+#define REG_PAGE_SIZE_512              0
+#define REG_PAGE_SIZE_1K               5
+#define REG_PAGE_SIZE_2K               1
+#define REG_PAGE_SIZE_4K               2
+#define REG_PAGE_SIZE_8K               3
+#define REG_PAGE_SIZE_16K              4
+#define CMD2_SHIFT                     8
+#define ADDR_CYCLES_SHIFT              28
+
+#define XFER_COMPLETE                  BIT(2)
+#define READ_READY                     BIT(1)
+#define WRITE_READY                    BIT(0)
+#define MBIT_ERROR                     BIT(3)
+
+#define PROG_PGRD                      BIT(0)
+#define PROG_ERASE                     BIT(2)
+#define PROG_STATUS                    BIT(3)
+#define PROG_PGPROG                    BIT(4)
+#define PROG_RDID                      BIT(6)
+#define PROG_RDPARAM                   BIT(7)
+#define PROG_RST                       BIT(8)
+#define PROG_GET_FEATURE               BIT(9)
+#define PROG_SET_FEATURE               BIT(10)
+
+#define PG_ADDR_SHIFT                  16
+#define BCH_MODE_SHIFT                 25
+#define BCH_EN_SHIFT                   27
+#define ECC_SIZE_SHIFT                 16
+
+#define MEM_ADDR_MASK                  GENMASK(7, 0)
+#define BCH_MODE_MASK                  GENMASK(27, 25)
+
+#define CS_MASK                                GENMASK(31, 30)
+#define CS_SHIFT                       30
+
+#define PAGE_ERR_CNT_MASK              GENMASK(16, 8)
+#define PKT_ERR_CNT_MASK               GENMASK(7, 0)
+
+#define NVDDR_MODE                     BIT(9)
+#define NVDDR_TIMING_MODE_SHIFT                3
+
+#define ONFI_ID_LEN                    8
+#define TEMP_BUF_SIZE                  1024
+#define NVDDR_MODE_PACKET_SIZE         8
+#define SDR_MODE_PACKET_SIZE           4
+
+#define ONFI_DATA_INTERFACE_NVDDR      BIT(4)
+#define EVENT_MASK     (XFER_COMPLETE | READ_READY | WRITE_READY | MBIT_ERROR)
+
+#define SDR_MODE_DEFLT_FREQ            80000000
+#define COL_ROW_ADDR(pos, val)                 (((val) & 0xFF) << (8 * (pos)))
+
+struct anfc_op {
+       s32 cmnds[4];
+       u32 type;
+       u32 len;
+       u32 naddrs;
+       u32 col;
+       u32 row;
+       unsigned int data_instr_idx;
+       unsigned int rdy_timeout_ms;
+       unsigned int rdy_delay_ns;
+       const struct nand_op_instr *data_instr;
+};
+
+/**
+ * struct anfc_nand_chip - Defines the nand chip related information
+ * @node:              used to store NAND chips into a list.
+ * @chip:              NAND chip information structure.
+ * @bch:               Bch / Hamming mode enable/disable.
+ * @bchmode:           Bch mode.
+ * @eccval:            Ecc config value.
+ * @raddr_cycles:      Row address cycle information.
+ * @caddr_cycles:      Column address cycle information.
+ * @pktsize:           Packet size for read / write operation.
+ * @csnum:             chipselect number to be used.
+ * @spktsize:          Packet size in ddr mode for status operation.
+ * @inftimeval:                Data interface and timing mode information
+ */
+struct anfc_nand_chip {
+       struct list_head node;
+       struct nand_chip chip;
+       bool bch;
+       u32 bchmode;
+       u32 eccval;
+       u16 raddr_cycles;
+       u16 caddr_cycles;
+       u32 pktsize;
+       int csnum;
+       u32 spktsize;
+       u32 inftimeval;
+};
+
+/**
+ * struct anfc_nand_controller - Defines the Arasan NAND flash controller
+ *                              driver instance
+ * @controller:                base controller structure.
+ * @chips:             list of all nand chips attached to the ctrler.
+ * @dev:               Pointer to the device structure.
+ * @base:              Virtual address of the NAND flash device.
+ * @curr_cmd:          Current command issued.
+ * @clk_sys:           Pointer to the system clock.
+ * @clk_flash:         Pointer to the flash clock.
+ * @dma:               Dma enable/disable.
+ * @iswriteoob:                Identifies if oob write operation is required.
+ * @buf:               Buffer used for read/write byte operations.
+ * @irq:               irq number
+ * @bufshift:          Variable used for indexing buffer operation
+ * @csnum:             Chip select number currently inuse.
+ * @event:             Completion event for nand status events.
+ * @status:            Status of the flash device.
+ * @prog:              Used to initiate controller operations.
+ */
+struct anfc_nand_controller {
+       struct nand_controller controller;
+       struct list_head chips;
+       struct device *dev;
+       void __iomem *base;
+       int curr_cmd;
+       struct clk *clk_sys;
+       struct clk *clk_flash;
+       bool dma;
+       bool iswriteoob;
+       int irq;
+       int csnum;
+       struct completion event;
+       int status;
+       u32 prog;
+};
+
+static int anfc_ooblayout_ecc(struct mtd_info *mtd, int section,
+                             struct mtd_oob_region *oobregion)
+{
+       struct nand_chip *nand = mtd_to_nand(mtd);
+
+       if (section >= nand->ecc.steps)
+               return -ERANGE;
+
+       if (section)
+               return -ERANGE;
+
+       oobregion->length = nand->ecc.total;
+       oobregion->offset = mtd->oobsize - oobregion->length;
+
+       return 0;
+}
+
+static int anfc_ooblayout_free(struct mtd_info *mtd, int section,
+                              struct mtd_oob_region *oobregion)
+{
+       struct nand_chip *nand = mtd_to_nand(mtd);
+
+       if (section >= nand->ecc.steps)
+               return -ERANGE;
+
+       if (section)
+               return -ERANGE;
+
+       oobregion->offset = 2;
+       oobregion->length = mtd->oobsize - nand->ecc.total - 2;
+
+       return 0;
+}
+
+static const struct mtd_ooblayout_ops anfc_ooblayout_ops = {
+       .ecc = anfc_ooblayout_ecc,
+       .free = anfc_ooblayout_free,
+};
+
+static inline struct anfc_nand_chip *to_anfc_nand(struct nand_chip *nand)
+{
+       return container_of(nand, struct anfc_nand_chip, chip);
+}
+
+static inline struct anfc_nand_controller *to_anfc(struct nand_controller 
*ctrl)
+{
+       return container_of(ctrl, struct anfc_nand_controller, controller);
+}
+
+static u8 anfc_page(u32 pagesize)
+{
+       switch (pagesize) {
+       case 512:
+               return REG_PAGE_SIZE_512;
+       case 1024:
+               return REG_PAGE_SIZE_1K;
+       case 2048:
+               return REG_PAGE_SIZE_2K;
+       case 4096:
+               return REG_PAGE_SIZE_4K;
+       case 8192:
+               return REG_PAGE_SIZE_8K;
+       case 16384:
+               return REG_PAGE_SIZE_16K;
+       default:
+               break;
+       }
+
+       return 0;
+}
+
+static inline void anfc_enable_intrs(struct anfc_nand_controller *nfc, u32 val)
+{
+       writel(val, nfc->base + INTR_STS_EN_OFST);
+       writel(val, nfc->base + INTR_SIG_EN_OFST);
+}
+
+static inline void anfc_config_ecc(struct anfc_nand_controller *nfc, bool on)
+{
+       u32 val;
+
+       val = readl(nfc->base + CMD_OFST);
+       if (on)
+               val |= ECC_ENABLE;
+       else
+               val &= ~ECC_ENABLE;
+       writel(val, nfc->base + CMD_OFST);
+}
+
+static inline void anfc_config_dma(struct anfc_nand_controller *nfc, int on)
+{
+       u32 val;
+
+       val = readl(nfc->base + CMD_OFST);
+       val &= ~DMA_EN_MASK;
+       if (on)
+               val |= DMA_ENABLE << DMA_EN_SHIFT;
+       writel(val, nfc->base + CMD_OFST);
+}
+
+static inline int anfc_wait_for_event(struct anfc_nand_controller *nfc)
+{
+       return wait_for_completion_timeout(&nfc->event,
+                                       msecs_to_jiffies(EVNT_TIMEOUT_MSEC));
+}
+
+static inline void anfc_setpktszcnt(struct anfc_nand_controller *nfc,
+                                   u32 pktsize, u32 pktcount)
+{
+       writel(pktsize | (pktcount << PKT_CNT_SHIFT), nfc->base + PKT_OFST);
+}
+
+static inline void anfc_set_eccsparecmd(struct anfc_nand_controller *nfc,
+                                       struct anfc_nand_chip *achip, u8 cmd1,
+                                       u8 cmd2)
+{
+       writel(cmd1 | (cmd2 << CMD2_SHIFT) |
+              (achip->caddr_cycles << ADDR_CYCLES_SHIFT),
+              nfc->base + ECC_SPR_CMD_OFST);
+}
+
+static void anfc_setpagecoladdr(struct anfc_nand_controller *nfc, u32 page,
+                               u16 col)
+{
+       u32 val;
+
+       writel(col | (page << PG_ADDR_SHIFT), nfc->base + MEM_ADDR1_OFST);
+
+       val = readl(nfc->base + MEM_ADDR2_OFST);
+       val = (val & ~MEM_ADDR_MASK) |
+             ((page >> PG_ADDR_SHIFT) & MEM_ADDR_MASK);
+       writel(val, nfc->base + MEM_ADDR2_OFST);
+}
+
+static void anfc_prepare_cmd(struct anfc_nand_controller *nfc, u8 cmd1,
+                            u8 cmd2, u8 dmamode,
+                            u32 pagesize, u8 addrcycles)
+{
+       u32 regval;
+
+       regval = cmd1 | (cmd2 << CMD2_SHIFT);
+       if (dmamode && nfc->dma)
+               regval |= DMA_ENABLE << DMA_EN_SHIFT;
+       regval |= addrcycles << ADDR_CYCLES_SHIFT;
+       regval |= anfc_page(pagesize) << REG_PAGE_SIZE_SHIFT;
+       writel(regval, nfc->base + CMD_OFST);
+}
+
+static void anfc_rw_dma_op(struct mtd_info *mtd, uint8_t *buf, int len,
+                           bool do_read, u32 prog)
+{
+       dma_addr_t paddr;
+       struct nand_chip *chip = mtd_to_nand(mtd);
+       struct anfc_nand_controller *nfc = to_anfc(chip->controller);
+       struct anfc_nand_chip *achip = to_anfc_nand(chip);
+       u32 eccintr = 0, dir;
+       u32 pktsize = len, pktcount = 1;
+
+       if (((nfc->curr_cmd == NAND_CMD_READ0)) ||
+           (nfc->curr_cmd == NAND_CMD_SEQIN && !nfc->iswriteoob)) {
+               pktsize = achip->pktsize;
+               pktcount = DIV_ROUND_UP(mtd->writesize, pktsize);
+       }
+       anfc_setpktszcnt(nfc, pktsize, pktcount);
+
+       if (!achip->bch && nfc->curr_cmd == NAND_CMD_READ0)
+               eccintr = MBIT_ERROR;
+
+       if (do_read)
+               dir = DMA_FROM_DEVICE;
+       else
+               dir = DMA_TO_DEVICE;
+
+       paddr = dma_map_single(nfc->dev, buf, len, dir);
+       if (dma_mapping_error(nfc->dev, paddr)) {
+               dev_err(nfc->dev, "Read buffer mapping error");
+               return;
+       }
+       writel(paddr, nfc->base + DMA_ADDR0_OFST);
+       writel((paddr >> 32), nfc->base + DMA_ADDR1_OFST);
+       anfc_enable_intrs(nfc, (XFER_COMPLETE | eccintr));
+       writel(prog, nfc->base + PROG_OFST);
+       anfc_wait_for_event(nfc);
+       dma_unmap_single(nfc->dev, paddr, len, dir);
+}
+
+static void anfc_rw_pio_op(struct mtd_info *mtd, uint8_t *buf, int len,
+                           bool do_read, int prog)
+{
+       struct nand_chip *chip = mtd_to_nand(mtd);
+       struct anfc_nand_controller *nfc = to_anfc(chip->controller);
+       struct anfc_nand_chip *achip = to_anfc_nand(chip);
+       u32 *bufptr = (u32 *)buf;
+       u32 cnt = 0, intr = 0;
+       u32 pktsize = len, pktcount = 1;
+
+       anfc_config_dma(nfc, 0);
+
+       if (((nfc->curr_cmd == NAND_CMD_READ0)) ||
+           (nfc->curr_cmd == NAND_CMD_SEQIN && !nfc->iswriteoob)) {
+               pktsize = achip->pktsize;
+               pktcount = DIV_ROUND_UP(mtd->writesize, pktsize);
+       }
+       anfc_setpktszcnt(nfc, pktsize, pktcount);
+
+       if (!achip->bch && nfc->curr_cmd == NAND_CMD_READ0)
+               intr = MBIT_ERROR;
+
+       if (do_read)
+               intr |= READ_READY;
+       else
+               intr |= WRITE_READY;
+
+       anfc_enable_intrs(nfc, intr);
+       writel(prog, nfc->base + PROG_OFST);
+       while (cnt < pktcount) {
+
+               anfc_wait_for_event(nfc);
+               cnt++;
+               if (cnt == pktcount)
+                       anfc_enable_intrs(nfc, XFER_COMPLETE);
+               if (do_read)
+                       ioread32_rep(nfc->base + DATA_PORT_OFST, bufptr,
+                                    pktsize / 4);
+               else
+                       iowrite32_rep(nfc->base + DATA_PORT_OFST, bufptr,
+                                     pktsize / 4);
+               bufptr += (pktsize / 4);
+               if (cnt < pktcount)
+                       anfc_enable_intrs(nfc, intr);
+       }
+       anfc_wait_for_event(nfc);
+}
+
+static void anfc_read_data_op(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+       struct nand_chip *chip = mtd_to_nand(mtd);
+       struct anfc_nand_controller *nfc = to_anfc(chip->controller);
+
+       if (nfc->dma && !is_vmalloc_addr(buf))
+               anfc_rw_dma_op(mtd, buf, len, 1, PROG_PGRD);
+       else
+               anfc_rw_pio_op(mtd, buf, len, 1, PROG_PGRD);
+}
+
+static void anfc_write_data_op(struct mtd_info *mtd, const uint8_t *buf,
+                              int len)
+{
+       struct nand_chip *chip = mtd_to_nand(mtd);
+       struct anfc_nand_controller *nfc = to_anfc(chip->controller);
+
+       if (nfc->dma && !is_vmalloc_addr(buf))
+               anfc_rw_dma_op(mtd, (char *)buf, len, 0, PROG_PGPROG);
+       else
+               anfc_rw_pio_op(mtd, (char *)buf, len, 0, PROG_PGPROG);
+}
+
+static int anfc_prep_nand_instr(struct mtd_info *mtd, int cmd,
+                               struct nand_chip *chip,  int col, int page)
+{
+       u8 addrs[5];
+
+       struct nand_op_instr instrs[] = {
+               NAND_OP_CMD(cmd, PSEC_TO_NSEC(1)),
+               NAND_OP_ADDR(3, addrs, 0),
+       };
+       struct nand_operation op = NAND_OPERATION(instrs);
+
+       if (mtd->writesize <= 512) {
+               addrs[0] = col;
+               if (page != -1) {
+                       addrs[1] = page;
+                       addrs[2] = page >> 8;
+                       instrs[1].ctx.addr.naddrs = 3;
+                       if (chip->options & NAND_ROW_ADDR_3) {
+                               addrs[3] = page >> 16;
+                               instrs[1].ctx.addr.naddrs += 1;
+                       }
+               } else {
+                       instrs[1].ctx.addr.naddrs = 1;
+               }
+       } else {
+               addrs[0] = col;
+               addrs[1] = col >> 8;
+               if (page != -1) {
+                       addrs[2] = page;
+                       addrs[3] = page >> 8;
+                       instrs[1].ctx.addr.naddrs = 4;
+                       if (chip->options & NAND_ROW_ADDR_3) {
+                               addrs[4] = page >> 16;
+                               instrs[1].ctx.addr.naddrs += 1;
+                       }
+               } else {
+                       instrs[1].ctx.addr.naddrs = 2;
+               }
+       }
+
+       return nand_exec_op(chip, &op);
+}
+
+static int anfc_nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
+{
+       u8 status;
+       int ret;
+       unsigned long timeo;
+
+       /*
+        * Apply this short delay always to ensure that we do wait tWB in any
+        * case on any machine.
+        */
+       ndelay(100);
+       timeo = jiffies + msecs_to_jiffies(STATUS_TIMEOUT);
+       do {
+               ret = nand_status_op(chip, &status);
+               if (ret)
+                       return ret;
+
+               if (status & NAND_STATUS_READY)
+                       break;
+               cond_resched();
+       } while (time_before(jiffies, timeo));
+
+
+       return status;
+}
+
+static int anfc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+                         int page)
+{
+       struct anfc_nand_controller *nfc = to_anfc(chip->controller);
+
+       nfc->iswriteoob = true;
+       anfc_prep_nand_instr(mtd, NAND_CMD_SEQIN, chip, mtd->writesize, page);
+       anfc_write_data_op(mtd, chip->oob_poi, mtd->oobsize);
+       nfc->iswriteoob = false;
+
+       return 0;
+}
+
+static int anfc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+                         int page)
+{
+       anfc_prep_nand_instr(mtd, NAND_CMD_READOOB, chip, 0, page);
+       anfc_read_data_op(mtd, chip->oob_poi, mtd->oobsize);
+
+       return 0;
+}
+
+
+static int anfc_read_page_hwecc(struct mtd_info *mtd,
+                               struct nand_chip *chip, uint8_t *buf,
+                               int oob_required, int page)
+{
+       u32 val;
+       struct anfc_nand_controller *nfc = to_anfc(chip->controller);
+       struct anfc_nand_chip *achip = to_anfc_nand(chip);
+       u8 *ecc_code = chip->ecc.code_buf;
+       u8 *p = buf;
+       int eccsize = chip->ecc.size;
+       int eccbytes = chip->ecc.bytes;
+       int stat = 0, i;
+       u32 ret;
+       unsigned int max_bitflips = 0;
+
+       ret = nand_read_page_op(chip, page, 0, NULL, 0);
+       if (ret)
+               return ret;
+
+       anfc_set_eccsparecmd(nfc, achip, NAND_CMD_RNDOUT, NAND_CMD_RNDOUTSTART);
+       anfc_config_ecc(nfc, true);
+       anfc_read_data_op(mtd, buf, mtd->writesize);
+
+       if (achip->bch) {
+               /*
+                * Arasan NAND controller can correct ECC upto 24-bit
+                * Beyond that, it can't detect errors, so no fail count
+                * updated here.
+                */
+               val = readl(nfc->base + ECC_ERR_CNT_OFST);
+               val = ((val & PAGE_ERR_CNT_MASK) >> 8);
+               mtd->ecc_stats.corrected += val;
+       } else {
+               val = readl(nfc->base + ECC_ERR_CNT_1BIT_OFST);
+               mtd->ecc_stats.corrected += val;
+               val = readl(nfc->base + ECC_ERR_CNT_2BIT_OFST);
+               mtd->ecc_stats.failed += val;
+               /* Clear ecc error count register 1Bit, 2Bit */
+               writel(0x0, nfc->base + ECC_ERR_CNT_1BIT_OFST);
+               writel(0x0, nfc->base + ECC_ERR_CNT_2BIT_OFST);
+       }
+
+       if (oob_required)
+               chip->ecc.read_oob(mtd, chip, page);
+
+       anfc_config_ecc(nfc, false);
+
+       if (val) {
+               if (!oob_required)
+                       chip->ecc.read_oob(mtd, chip, page);
+
+               mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
+                                          chip->ecc.total);
+               for (i = 0; i < chip->ecc.steps; ++i) {
+                       stat = nand_check_erased_ecc_chunk(p,
+                                                          chip->ecc.size,
+                                                          &ecc_code[i],
+                                                          eccbytes,
+                                                          NULL, 0,
+                                                          chip->ecc.strength);
+                       if (stat < 0) {
+                               /*
+                                * No fail count updated here, because the data
+                                * is already corrected and ecc_stats.corrected
+                                * is updated and in case of haming,
+                                * ecc_stats.failed is updated.
+                                */
+                               stat = 0;
+                       } else {
+                               mtd->ecc_stats.corrected += stat;
+                       }
+                       max_bitflips = max_t(unsigned int, max_bitflips, stat);
+                       p += eccsize;
+               }
+       }
+
+       return max_bitflips;
+}
+
+
+static int anfc_write_page_hwecc(struct mtd_info *mtd,
+                                struct nand_chip *chip, const uint8_t *buf,
+                                int oob_required, int page)
+{
+       int ret;
+       struct anfc_nand_controller *nfc = to_anfc(chip->controller);
+       struct anfc_nand_chip *achip = to_anfc_nand(chip);
+       u8 status;
+       u8 *ecc_calc = chip->ecc.calc_buf;
+
+       ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
+       if (ret)
+               return ret;
+
+       anfc_set_eccsparecmd(nfc, achip, NAND_CMD_RNDIN, 0);
+       anfc_config_ecc(nfc, true);
+       anfc_write_data_op(mtd, buf, mtd->writesize);
+
+       if (oob_required) {
+               status = anfc_nand_wait(mtd, chip);
+               if (status & NAND_STATUS_FAIL)
+                       return -EIO;
+
+               anfc_prep_nand_instr(mtd, NAND_CMD_READOOB, chip, 0, page);
+               anfc_read_data_op(mtd, ecc_calc, mtd->oobsize);
+               ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi,
+                                                0, chip->ecc.total);
+               if (ret)
+                       return ret;
+
+               chip->ecc.write_oob(mtd, chip, page);
+       }
+       status = anfc_nand_wait(mtd, chip);
+       if (status & NAND_STATUS_FAIL)
+               return -EIO;
+
+       anfc_config_ecc(nfc, false);
+
+       return 0;
+}
+
+/**
+ * anfc_get_mode_frm_timings - Converts sdr timing values to respective modes
+ * @sdr: SDR NAND chip timings structure
+ * Arasan NAND controller has Data Interface Register (0x6C)
+ * which has timing mode configurations and need to program only the modes but
+ * not timings. So this function returns SDR timing mode from SDR timing values
+ *
+ * Return:     SDR timing mode on success, a negative error code otherwise.
+ */
+static int anfc_get_mode_frm_timings(const struct nand_sdr_timings *sdr)
+{
+       if (sdr->tRC_min <= 20000)
+               return 5;
+       else if (sdr->tRC_min <= 25000)
+               return 4;
+       else if (sdr->tRC_min <= 30000)
+               return 3;
+       else if (sdr->tRC_min <= 35000)
+               return 2;
+       else if (sdr->tRC_min <= 50000)
+               return 1;
+       else if (sdr->tRC_min <= 100000)
+               return 0;
+       else
+               return -1;
+}
+
+static int anfc_ecc_init(struct mtd_info *mtd,
+                        struct nand_ecc_ctrl *ecc, int ecc_mode)
+{
+       u32 ecc_addr;
+       unsigned int bchmode, steps;
+       struct nand_chip *chip = mtd_to_nand(mtd);
+       struct anfc_nand_chip *achip = to_anfc_nand(chip);
+
+       ecc->write_oob = anfc_write_oob;
+       ecc->read_oob = anfc_read_oob;
+       ecc->mode = NAND_ECC_HW;
+       ecc->read_page = anfc_read_page_hwecc;
+       ecc->write_page = anfc_write_page_hwecc;
+
+       mtd_set_ooblayout(mtd, &anfc_ooblayout_ops);
+
+       steps = mtd->writesize / chip->ecc_step_ds;
+
+       switch (chip->ecc_strength_ds) {
+       case 12:
+               bchmode = 0x1;
+               break;
+       case 8:
+               bchmode = 0x2;
+               break;
+       case 4:
+               bchmode = 0x3;
+               break;
+       case 24:
+               bchmode = 0x4;
+               break;
+       default:
+               bchmode = 0x0;
+       }
+       if (!bchmode)
+               ecc->total = 3 * steps;
+       else
+               ecc->total =
+                    DIV_ROUND_UP(fls(8 * chip->ecc_step_ds) *
+                        chip->ecc_strength_ds * steps, 8);
+
+       ecc->strength = chip->ecc_strength_ds;
+       ecc->size = chip->ecc_step_ds;
+       ecc->bytes = ecc->total / steps;
+       ecc->steps = steps;
+       achip->bchmode = bchmode;
+       achip->bch = achip->bchmode;
+       ecc_addr = mtd->writesize + (mtd->oobsize - ecc->total);
+
+       achip->eccval = ecc_addr | (ecc->total << ECC_SIZE_SHIFT) |
+                       (achip->bch << BCH_EN_SHIFT);
+
+       if (chip->ecc_step_ds >= 1024)
+               achip->pktsize = 1024;
+       else
+               achip->pktsize = 512;
+
+       return 0;
+}
+
+/* NAND framework ->exec_op() hooks and related helpers */
+static void anfc_parse_instructions(struct nand_chip *chip,
+                                        const struct nand_subop *subop,
+                                        struct anfc_op *nfc_op)
+{
+       const struct nand_op_instr *instr = NULL;
+       struct anfc_nand_controller *nfc = to_anfc(chip->controller);
+       unsigned int op_id;
+       int i = 0;
+       const u8 *addrs;
+
+       memset(nfc_op, 0, sizeof(struct anfc_op));
+
+       /*
+        * This is to keep track of status command. some times
+        * core will just request status byte to read. so to make
+        * sure that no command is issued, cmnds[0] is assigned to
+        * NAND_CMD_NONE.
+        */
+       nfc_op->cmnds[0] = NAND_CMD_NONE;
+       for (op_id = 0; op_id < subop->ninstrs; op_id++) {
+               instr = &subop->instrs[op_id];
+               switch (instr->type) {
+               case NAND_OP_CMD_INSTR:
+                       nfc_op->type = NAND_OP_CMD_INSTR;
+                       if (op_id)
+                               nfc_op->cmnds[1] = instr->ctx.cmd.opcode;
+                       else
+                               nfc_op->cmnds[0] = instr->ctx.cmd.opcode;
+                       nfc->curr_cmd = nfc_op->cmnds[0];
+                       break;
+
+               case NAND_OP_ADDR_INSTR:
+                       i = nand_subop_get_addr_start_off(subop, op_id);
+                       nfc_op->naddrs = nand_subop_get_num_addr_cyc(subop,
+                                                                    op_id);
+                       addrs = &instr->ctx.addr.addrs[i];
+
+                       for (; i < nfc_op->naddrs; i++) {
+                               u8 val = instr->ctx.addr.addrs[i];
+
+                               if (nfc_op->cmnds[0] == NAND_CMD_ERASE1)
+                                       nfc_op->row |= COL_ROW_ADDR(i, val);
+                               else {
+                                       if (i < 2)
+                                               nfc_op->col |= COL_ROW_ADDR(
+                                                               i, val);
+                                       else
+                                               nfc_op->row |= COL_ROW_ADDR(
+                                                               i - 2, val);
+                               }
+                       }
+                       break;
+               case NAND_OP_DATA_IN_INSTR:
+                       nfc_op->data_instr = instr;
+                       nfc_op->type = NAND_OP_DATA_IN_INSTR;
+                       nfc_op->data_instr_idx = op_id;
+                       break;
+               case NAND_OP_DATA_OUT_INSTR:
+                       nfc_op->data_instr = instr;
+                       nfc_op->type = NAND_OP_DATA_IN_INSTR;
+                       nfc_op->data_instr_idx = op_id;
+                       break;
+               case NAND_OP_WAITRDY_INSTR:
+                       nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
+                       nfc_op->rdy_delay_ns = instr->delay_ns;
+                       break;
+               }
+       }
+}
+
+/**
+ * anfc_data_cpy - Read data from the NAND
+ * @nfc: The Controller instance
+ * @mtd: mtd info structure
+ * @buf: buffer used to store the data
+ * @len: length of the buffer
+ * @operation: current command transfer,
+ *             that needs to be set in program_register
+ * @direction: Read/write transfer
+ * The Arasan NAND controller always read/write 4byte alinged
+ * lengths.If the length of the data is not 4byte aligned, then
+ * we need to make it as alinged.
+ *
+ * Returns 0 on success, a negative error code otherwise.
+ */
+static void anfc_data_cpy(struct anfc_nand_controller *nfc,
+                         struct mtd_info *mtd, u8 *buf,
+                         int len, int operation, bool direction)
+{
+       u32 Rem = 0, Div;
+
+       if (!buf)
+               return;
+
+       Rem = len % 4;
+       Div = len / 4;
+       if (len < 4) {
+               anfc_rw_pio_op(mtd, buf, 4, direction, operation);
+       } else {
+               anfc_rw_pio_op(mtd, buf, 4*Div, direction, operation);
+
+               if (Rem) {
+                       buf += (4*Div);
+                       anfc_rw_pio_op(mtd, buf, 4, direction, operation);
+               }
+       }
+}
+
+static int anfc_status_type_exec(struct nand_chip *chip,
+                                  const struct nand_subop *subop)
+{
+       const struct nand_op_instr *instr;
+       struct anfc_op nfc_op = {};
+       unsigned int op_id, len;
+       struct anfc_nand_chip *achip = to_anfc_nand(chip);
+       struct anfc_nand_controller *nfc = to_anfc(chip->controller);
+
+       anfc_parse_instructions(chip, subop, &nfc_op);
+       instr = nfc_op.data_instr;
+       op_id = nfc_op.data_instr_idx;
+
+       anfc_prepare_cmd(nfc, nfc_op.cmnds[0], 0, 0, 0, 0);
+       anfc_setpktszcnt(nfc, achip->spktsize / 4, 1);
+       anfc_setpagecoladdr(nfc, nfc_op.row, nfc_op.col);
+       nfc->prog = PROG_STATUS;
+
+       anfc_enable_intrs(nfc, XFER_COMPLETE);
+       writel(nfc->prog, nfc->base + PROG_OFST);
+       anfc_wait_for_event(nfc);
+
+       if (!nfc_op.data_instr)
+               return 0;
+
+       len = nand_subop_get_data_len(subop, op_id);
+
+       /*
+        * The Arasan NAND controller will update the status value
+        * returned by the flash device in FLASH_STS register.
+        */
+       nfc->status = readl(nfc->base + FLASH_STS_OFST);
+       memcpy(instr->ctx.data.buf.in, &nfc->status, len);
+       return 0;
+}
+
+static int anfc_erase_function(struct nand_chip *chip,
+                                  struct anfc_op nfc_op)
+{
+
+       struct anfc_nand_chip *achip = to_anfc_nand(chip);
+       struct anfc_nand_controller *nfc = to_anfc(chip->controller);
+
+       nfc->prog = PROG_ERASE;
+       anfc_prepare_cmd(nfc, nfc_op.cmnds[0], NAND_CMD_ERASE2, 0, 0,
+                        achip->raddr_cycles);
+       nfc_op.col = nfc_op.row & 0xffff;
+       nfc_op.row = (nfc_op.row >> PG_ADDR_SHIFT) & 0xffff;
+       anfc_setpagecoladdr(nfc, nfc_op.row, nfc_op.col);
+
+       anfc_enable_intrs(nfc, XFER_COMPLETE);
+       writel(nfc->prog, nfc->base + PROG_OFST);
+       anfc_wait_for_event(nfc);
+
+       return 0;
+}
+
+
+static int anfc_exec_op_cmd(struct nand_chip *chip,
+                                  const struct nand_subop *subop)
+{
+       const struct nand_op_instr *instr;
+       struct anfc_op nfc_op = {};
+       struct anfc_nand_chip *achip = to_anfc_nand(chip);
+       struct anfc_nand_controller *nfc = to_anfc(chip->controller);
+       struct mtd_info *mtd = nand_to_mtd(chip);
+       u32 addrcycles;
+       unsigned int op_id, len = 0;
+       bool reading;
+
+       anfc_parse_instructions(chip, subop, &nfc_op);
+       instr = nfc_op.data_instr;
+       op_id = nfc_op.data_instr_idx;
+       if (nfc_op.data_instr)
+               len = nand_subop_get_data_len(subop, op_id);
+
+       /*
+        * The switch case is to prepare a command and to set page/column
+        * address. Arasan NAND controller has program register(Off: 0x10)),
+        * which needs to be set for every command.
+        * Ex: When NAND_CMD_RESET is issued, then we need to set reset bit
+        * in program_register. etc..
+        */
+       switch (nfc_op.cmnds[0]) {
+       case NAND_CMD_SEQIN:
+               addrcycles = achip->raddr_cycles + achip->caddr_cycles;
+
+               anfc_prepare_cmd(nfc, nfc_op.cmnds[0], NAND_CMD_PAGEPROG, 1,
+                                mtd->writesize, addrcycles);
+               anfc_setpagecoladdr(nfc, nfc_op.row, nfc_op.col);
+               break;
+       case NAND_CMD_READOOB:
+               nfc_op.col += mtd->writesize;
+       case NAND_CMD_READ0:
+       case NAND_CMD_READ1:
+               addrcycles = achip->raddr_cycles + achip->caddr_cycles;
+               anfc_prepare_cmd(nfc, NAND_CMD_READ0, NAND_CMD_READSTART, 1,
+                                mtd->writesize, addrcycles);
+               anfc_setpagecoladdr(nfc, nfc_op.row, nfc_op.col);
+               if (!nfc_op.data_instr)
+                       return 0;
+
+               anfc_read_data_op(mtd, instr->ctx.data.buf.in, len);
+               break;
+       case NAND_CMD_RNDOUT:
+               anfc_prepare_cmd(nfc, nfc_op.cmnds[0], NAND_CMD_RNDOUTSTART, 1,
+                                mtd->writesize, 2);
+               anfc_setpagecoladdr(nfc, nfc_op.row, nfc_op.col);
+               nfc->prog = PROG_PGRD;
+               break;
+       case NAND_CMD_PARAM:
+               anfc_prepare_cmd(nfc, nfc_op.cmnds[0], 0, 0, 0, 1);
+               anfc_setpagecoladdr(nfc, nfc_op.row, nfc_op.col);
+               nfc->prog = PROG_RDPARAM;
+               break;
+       case NAND_CMD_READID:
+               anfc_prepare_cmd(nfc, nfc_op.cmnds[0], 0, 0, 0, 1);
+               anfc_setpagecoladdr(nfc, nfc_op.row, nfc_op.col);
+               nfc->prog = PROG_RDID;
+               break;
+       case NAND_CMD_GET_FEATURES:
+               anfc_prepare_cmd(nfc, nfc_op.cmnds[0], 0, 0, 0, 1);
+               anfc_setpagecoladdr(nfc, nfc_op.row, nfc_op.col);
+               nfc->prog = PROG_GET_FEATURE;
+               break;
+       case NAND_CMD_SET_FEATURES:
+               anfc_prepare_cmd(nfc, nfc_op.cmnds[0], 0, 0, 0, 1);
+               anfc_setpagecoladdr(nfc, nfc_op.row, nfc_op.col);
+               nfc->prog = PROG_SET_FEATURE;
+               break;
+       case NAND_CMD_ERASE1:
+               anfc_erase_function(chip, nfc_op);
+               break;
+       default:
+               break;
+       }
+
+       if (!nfc_op.data_instr)
+               return 0;
+
+       reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR);
+       if (reading) {
+               if (nfc->curr_cmd == NAND_CMD_STATUS) {
+                       nfc->status = readl(nfc->base + FLASH_STS_OFST);
+                       memcpy(instr->ctx.data.buf.in, &nfc->status, len);
+               } else {
+                       anfc_data_cpy(nfc, mtd, instr->ctx.data.buf.in, len,
+                                     nfc->prog, 1);
+               }
+       } else {
+               anfc_data_cpy(nfc, mtd, (char *)instr->ctx.data.buf.out, len,
+                             nfc->prog, 0);
+       }
+
+       return 0;
+}
+
+static int anfc_reset_type_exec(struct nand_chip *chip,
+                                  const struct nand_subop *subop)
+{
+       struct anfc_op nfc_op = {};
+       struct anfc_nand_controller *nfc = to_anfc(chip->controller);
+
+       anfc_parse_instructions(chip, subop, &nfc_op);
+       anfc_prepare_cmd(nfc, nfc_op.cmnds[0], 0, 0, 0, 0);
+       nfc->prog = PROG_RST;
+       anfc_enable_intrs(nfc, XFER_COMPLETE);
+       writel(nfc->prog, nfc->base + PROG_OFST);
+       anfc_wait_for_event(nfc);
+
+       return 0;
+}
+
+static const struct nand_op_parser anfc_op_parser = NAND_OP_PARSER
+       (NAND_OP_PARSER_PATTERN
+               (anfc_exec_op_cmd,
+               NAND_OP_PARSER_PAT_CMD_ELEM(false),
+               NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7),
+               NAND_OP_PARSER_PAT_WAITRDY_ELEM(false),
+               NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 2048)),
+       NAND_OP_PARSER_PATTERN
+               (anfc_exec_op_cmd,
+               NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 2048)),
+       NAND_OP_PARSER_PATTERN
+               (anfc_exec_op_cmd,
+               NAND_OP_PARSER_PAT_CMD_ELEM(false),
+               NAND_OP_PARSER_PAT_ADDR_ELEM(false, 7),
+               NAND_OP_PARSER_PAT_CMD_ELEM(false),
+               NAND_OP_PARSER_PAT_WAITRDY_ELEM(false),
+               NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 2048)),
+       NAND_OP_PARSER_PATTERN
+               (anfc_exec_op_cmd,
+               NAND_OP_PARSER_PAT_CMD_ELEM(false),
+               NAND_OP_PARSER_PAT_ADDR_ELEM(false, 8),
+               NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 2048),
+               //NAND_OP_PARSER_PAT_CMD_ELEM(true),
+               NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
+       NAND_OP_PARSER_PATTERN
+               (anfc_exec_op_cmd,
+               NAND_OP_PARSER_PAT_CMD_ELEM(false),
+               NAND_OP_PARSER_PAT_ADDR_ELEM(false, 8),
+               NAND_OP_PARSER_PAT_CMD_ELEM(true),
+               NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 2048)),
+       NAND_OP_PARSER_PATTERN
+               (anfc_reset_type_exec,
+               NAND_OP_PARSER_PAT_CMD_ELEM(false),
+               NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
+       NAND_OP_PARSER_PATTERN
+               (anfc_status_type_exec,
+               NAND_OP_PARSER_PAT_CMD_ELEM(false),
+               NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, 1)),
+       );
+
+static int anfc_exec_op(struct nand_chip *chip,
+                            const struct nand_operation *op,
+                            bool check_only)
+{
+       return nand_op_parser_exec_op(chip, &anfc_op_parser,
+                                             op, check_only);
+}
+
+static void anfc_select_chip(struct mtd_info *mtd, int num)
+{
+
+       u32 val;
+       struct nand_chip *chip = mtd_to_nand(mtd);
+       struct anfc_nand_chip *achip = to_anfc_nand(chip);
+       struct anfc_nand_controller *nfc = to_anfc(chip->controller);
+
+       if (num == -1)
+               return;
+
+       val = readl(nfc->base + MEM_ADDR2_OFST);
+       val &= (val & ~(CS_MASK | BCH_MODE_MASK));
+       val |= (achip->csnum << CS_SHIFT) | (achip->bchmode << BCH_MODE_SHIFT);
+       writel(val, nfc->base + MEM_ADDR2_OFST);
+       nfc->csnum = achip->csnum;
+       writel(achip->eccval, nfc->base + ECC_OFST);
+       writel(achip->inftimeval, nfc->base + DATA_INTERFACE_OFST);
+}
+
+static irqreturn_t anfc_irq_handler(int irq, void *ptr)
+{
+       struct anfc_nand_controller *nfc = ptr;
+       u32 status;
+
+       status = readl(nfc->base + INTR_STS_OFST);
+       if (status & EVENT_MASK) {
+               complete(&nfc->event);
+               writel((status & EVENT_MASK), nfc->base + INTR_STS_OFST);
+               writel(0, nfc->base + INTR_STS_EN_OFST);
+               writel(0, nfc->base + INTR_SIG_EN_OFST);
+               return IRQ_HANDLED;
+       }
+
+       return IRQ_NONE;
+}
+
+static int anfc_setup_data_interface(struct mtd_info *mtd, int csline,
+                                    const struct nand_data_interface *conf)
+{
+
+       struct nand_chip *chip = mtd_to_nand(mtd);
+       struct anfc_nand_controller *nfc = to_anfc(chip->controller);
+       struct anfc_nand_chip *achip = to_anfc_nand(chip);
+
+       int mode, err;
+       void __iomem *nand_clk;
+       const struct nand_sdr_timings *sdr;
+       u32 inftimeval;
+       bool change_sdr_clk = false;
+
+       if (csline == NAND_DATA_IFACE_CHECK_ONLY)
+               return 0;
+
+       /*
+        * If the controller is already in the same mode as flash device
+        * then no need to change the timing mode again.
+        */
+       sdr = nand_get_sdr_timings(conf);
+       if (IS_ERR(sdr))
+               return PTR_ERR(sdr);
+
+       mode = anfc_get_mode_frm_timings(sdr);
+
+       if (mode < 0)
+               return -ENOTSUPP;
+
+       inftimeval = mode & 7;
+       if (mode >= 2 && mode <= 5)
+               change_sdr_clk = true;
+       /*
+        * SDR timing modes 2-5 will not work for the arasan nand when
+        * freq > 90 MHz, so reduce the freq in SDR modes 2-5 to < 90Mhz
+        */
+       if (change_sdr_clk) {
+               clk_disable_unprepare(nfc->clk_sys);
+               //err = clk_set_rate(nfc->clk_sys, SDR_MODE_DEFLT_FREQ);
+               nand_clk = ioremap(0xFF5E00B4, 50);
+               writel(0x01011200, nand_clk);
+               err = clk_prepare_enable(nfc->clk_sys);
+               if (err) {
+                       dev_err(nfc->dev, "Unable to enable sys clock.\n");
+                       clk_disable_unprepare(nfc->clk_sys);
+                       return err;
+               }
+       }
+       achip->inftimeval = inftimeval;
+       if (mode & ONFI_DATA_INTERFACE_NVDDR)
+               achip->spktsize = NVDDR_MODE_PACKET_SIZE;
+
+       return 0;
+}
+
+static int anfc_nand_attach_chip(struct nand_chip *chip)
+{
+       struct mtd_info *mtd = nand_to_mtd(chip);
+       struct anfc_nand_chip *achip = to_anfc_nand(chip);
+       u32 ret;
+
+       if (mtd->writesize <= SZ_512)
+               achip->caddr_cycles = 1;
+       else
+               achip->caddr_cycles = 2;
+
+       if (chip->options & NAND_ROW_ADDR_3)
+               achip->raddr_cycles = 3;
+       else
+               achip->raddr_cycles = 2;
+
+       chip->ecc.calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
+       chip->ecc.code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
+       ret = anfc_ecc_init(mtd, &chip->ecc, chip->ecc.mode);
+       if (ret)
+               return ret;
+
+       return 0;
+}
+
+static const struct nand_controller_ops anfc_nand_controller_ops = {
+       .attach_chip = anfc_nand_attach_chip,
+};
+
+static int anfc_nand_chip_init(struct anfc_nand_controller *nfc,
+                              struct anfc_nand_chip *anand_chip,
+                              struct device_node *np)
+{
+       struct nand_chip *chip = &anand_chip->chip;
+       struct mtd_info *mtd = nand_to_mtd(chip);
+       int ret;
+
+       ret = of_property_read_u32(np, "reg", &anand_chip->csnum);
+       if (ret) {
+               dev_err(nfc->dev, "can't get chip-select\n");
+               return -ENXIO;
+       }
+       mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL, "arasan_nand.%d",
+                                  anand_chip->csnum);
+       mtd->dev.parent = nfc->dev;
+
+       chip->chip_delay = 30;
+       chip->controller = &nfc->controller;
+       chip->options = NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE;
+       chip->bbt_options = NAND_BBT_USE_FLASH;
+       chip->select_chip = anfc_select_chip;
+       chip->setup_data_interface = anfc_setup_data_interface;
+       chip->exec_op = anfc_exec_op;
+       nand_set_flash_node(chip, np);
+
+       anand_chip->spktsize = SDR_MODE_PACKET_SIZE;
+
+       ret = nand_scan(mtd, 1);
+       if (ret) {
+               dev_err(nfc->dev, "nand_scan_tail for NAND failed\n");
+               return ret;
+       }
+
+       return mtd_device_register(mtd, NULL, 0);
+}
+
+static int anfc_probe(struct platform_device *pdev)
+{
+       struct anfc_nand_controller *nfc;
+       struct anfc_nand_chip *anand_chip;
+       struct device_node *np = pdev->dev.of_node, *child;
+       struct resource *res;
+       int err;
+
+       nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
+       if (!nfc)
+               return -ENOMEM;
+
+       init_waitqueue_head(&nfc->controller.wq);
+       INIT_LIST_HEAD(&nfc->chips);
+       init_completion(&nfc->event);
+       nfc->dev = &pdev->dev;
+       platform_set_drvdata(pdev, nfc);
+       nfc->csnum = -1;
+       nfc->controller.ops = &anfc_nand_controller_ops;
+       res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+       nfc->base = devm_ioremap_resource(&pdev->dev, res);
+       if (IS_ERR(nfc->base))
+               return PTR_ERR(nfc->base);
+       nfc->dma = of_property_read_bool(pdev->dev.of_node,
+                                        "arasan,has-mdma");
+       nfc->irq = platform_get_irq(pdev, 0);
+       if (nfc->irq < 0) {
+               dev_err(&pdev->dev, "platform_get_irq failed\n");
+               return -ENXIO;
+       }
+       dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
+       err = devm_request_irq(&pdev->dev, nfc->irq, anfc_irq_handler,
+                              0, "arasannfc", nfc);
+       if (err)
+               return err;
+       nfc->clk_sys = devm_clk_get(&pdev->dev, "sys");
+       if (IS_ERR(nfc->clk_sys)) {
+               dev_err(&pdev->dev, "sys clock not found.\n");
+               return PTR_ERR(nfc->clk_sys);
+       }
+
+       nfc->clk_flash = devm_clk_get(&pdev->dev, "flash");
+       if (IS_ERR(nfc->clk_flash)) {
+               dev_err(&pdev->dev, "flash clock not found.\n");
+               return PTR_ERR(nfc->clk_flash);
+       }
+
+       err = clk_prepare_enable(nfc->clk_sys);
+       if (err) {
+               dev_err(&pdev->dev, "Unable to enable sys clock.\n");
+               return err;
+       }
+
+       err = clk_prepare_enable(nfc->clk_flash);
+       if (err) {
+               dev_err(&pdev->dev, "Unable to enable flash clock.\n");
+               goto clk_dis_sys;
+       }
+
+       for_each_available_child_of_node(np, child) {
+               anand_chip = devm_kzalloc(&pdev->dev, sizeof(*anand_chip),
+                                         GFP_KERNEL);
+               if (!anand_chip) {
+                       of_node_put(child);
+                       err = -ENOMEM;
+                       goto nandchip_clean_up;
+               }
+               err = anfc_nand_chip_init(nfc, anand_chip, child);
+               if (err) {
+                       devm_kfree(&pdev->dev, anand_chip);
+                       continue;
+               }
+
+               list_add_tail(&anand_chip->node, &nfc->chips);
+       }
+       return 0;
+
+nandchip_clean_up:
+       list_for_each_entry(anand_chip, &nfc->chips, node)
+               nand_release(nand_to_mtd(&anand_chip->chip));
+       clk_disable_unprepare(nfc->clk_flash);
+clk_dis_sys:
+       clk_disable_unprepare(nfc->clk_sys);
+
+       return err;
+}
+
+static int anfc_remove(struct platform_device *pdev)
+{
+       struct anfc_nand_controller *nfc = platform_get_drvdata(pdev);
+       struct anfc_nand_chip *anand_chip;
+
+       list_for_each_entry(anand_chip, &nfc->chips, node)
+               nand_release(nand_to_mtd(&anand_chip->chip));
+
+       clk_disable_unprepare(nfc->clk_sys);
+       clk_disable_unprepare(nfc->clk_flash);
+
+       return 0;
+}
+
+static const struct of_device_id anfc_ids[] = {
+       { .compatible = "arasan,nfc-v3p10" },
+       { .compatible = "xlnx,zynqmp-nand" },
+       {  }
+};
+MODULE_DEVICE_TABLE(of, anfc_ids);
+
+static struct platform_driver anfc_driver = {
+       .driver = {
+               .name = DRIVER_NAME,
+               .of_match_table = anfc_ids,
+       },
+       .probe = anfc_probe,
+       .remove = anfc_remove,
+};
+module_platform_driver(anfc_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Xilinx, Inc");
+MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver");
+
-- 
2.7.4

Reply via email to