On Thu, Sep 18, 2025 at 1:09 AM Vlastimil Babka <vba...@suse.cz> wrote: > > On 9/17/25 16:14, Vlastimil Babka wrote: > > On 9/17/25 15:34, Harry Yoo wrote: > >> On Wed, Sep 17, 2025 at 03:21:31PM +0200, Vlastimil Babka wrote: > >>> On 9/17/25 15:07, Harry Yoo wrote: > >>> > On Wed, Sep 17, 2025 at 02:05:49PM +0200, Vlastimil Babka wrote: > >>> >> On 9/17/25 13:32, Harry Yoo wrote: > >>> >> > On Wed, Sep 17, 2025 at 11:55:10AM +0200, Vlastimil Babka wrote: > >>> >> >> On 9/17/25 10:30, Harry Yoo wrote: > >>> >> >> > On Wed, Sep 10, 2025 at 10:01:06AM +0200, Vlastimil Babka wrote: > >>> >> >> >> + sfw->skip = true; > >>> >> >> >> + continue; > >>> >> >> >> + } > >>> >> >> >> > >>> >> >> >> + INIT_WORK(&sfw->work, flush_rcu_sheaf); > >>> >> >> >> + sfw->skip = false; > >>> >> >> >> + sfw->s = s; > >>> >> >> >> + queue_work_on(cpu, flushwq, &sfw->work); > >>> >> >> >> + flushed = true; > >>> >> >> >> + } > >>> >> >> >> + > >>> >> >> >> + for_each_online_cpu(cpu) { > >>> >> >> >> + sfw = &per_cpu(slub_flush, cpu); > >>> >> >> >> + if (sfw->skip) > >>> >> >> >> + continue; > >>> >> >> >> + flush_work(&sfw->work); > >>> >> >> >> + } > >>> >> >> >> + > >>> >> >> >> + mutex_unlock(&flush_lock); > >>> >> >> >> + } > >>> >> >> >> + > >>> >> >> >> + mutex_unlock(&slab_mutex); > >>> >> >> >> + cpus_read_unlock(); > >>> >> >> >> + > >>> >> >> >> + if (flushed) > >>> >> >> >> + rcu_barrier(); > >>> >> >> > > >>> >> >> > I think we need to call rcu_barrier() even if flushed == false? > >>> >> >> > > >>> >> >> > Maybe a kvfree_rcu()'d object was already waiting for the rcu > >>> >> >> > callback to > >>> >> >> > be processed before flush_all_rcu_sheaves() is called, and > >>> >> >> > in flush_all_rcu_sheaves() we skipped all (cache, cpu) pairs, > >>> >> >> > so flushed == false but the rcu callback isn't processed yet > >>> >> >> > by the end of the function? > >>> >> >> > > >>> >> >> > That sounds like a very unlikely to happen in a realistic > >>> >> >> > scenario, > >>> >> >> > but still possible... > >>> >> >> > >>> >> >> Yes also good point, will flush unconditionally. > >>> >> >> > >>> >> >> Maybe in __kfree_rcu_sheaf() I should also move the call_rcu(...) > >>> >> >> before > >>> >> >> local_unlock(). > >>> >> >> > >>> >> >> So we don't end up seeing a NULL pcs->rcu_free in > >>> >> >> flush_all_rcu_sheaves() because __kfree_rcu_sheaf() already set it > >>> >> >> to NULL, > >>> >> >> but didn't yet do the call_rcu() as it got preempted after > >>> >> >> local_unlock(). > >>> >> > > >>> >> > Makes sense to me. > >>> > > >>> > Wait, I'm confused. > >>> > > >>> > I think the caller of kvfree_rcu_barrier() should make sure that it's > >>> > invoked > >>> > only after a kvfree_rcu(X, rhs) call has returned, if the caller expects > >>> > the object X to be freed before kvfree_rcu_barrier() returns? > >>> > >>> Hmm, the caller of kvfree_rcu(X, rhs) might have returned without filling > >>> up > >>> the rcu_sheaf fully and thus without submitting it to call_rcu(), then > >>> migrated to another cpu. Then it calls kvfree_rcu_barrier() while another > >>> unrelated kvfree_rcu(X, rhs) call on the previous cpu is for the same > >>> kmem_cache (kvfree_rcu_barrier() is not only for cache destruction), fills > >>> up the rcu_sheaf fully and is about to call_rcu() on it. And since that > >>> sheaf also contains the object X, we should make sure that is flushed. > >> > >> I was going to say "but we queue and wait for the flushing work to > >> complete, so the sheaf containing object X should be flushed?" > >> > >> But nah, that's true only if we see pcs->rcu_free != NULL in > >> flush_all_rcu_sheaves(). > >> > >> You are right... > >> > >> Hmm, maybe it's simpler to fix this by never skipping queueing the work > >> even when pcs->rcu_sheaf == NULL? > > > > I guess it's simpler, yeah. > > So what about this? The unconditional queueing should cover all races with > __kfree_rcu_sheaf() so there's just unconditional rcu_barrier() in the end. > > From 0722b29fa1625b31c05d659d1d988ec882247b38 Mon Sep 17 00:00:00 2001 > From: Vlastimil Babka <vba...@suse.cz> > Date: Wed, 3 Sep 2025 14:59:46 +0200 > Subject: [PATCH] slab: add sheaf support for batching kfree_rcu() operations > > Extend the sheaf infrastructure for more efficient kfree_rcu() handling. > For caches with sheaves, on each cpu maintain a rcu_free sheaf in > addition to main and spare sheaves. > > kfree_rcu() operations will try to put objects on this sheaf. Once full, > the sheaf is detached and submitted to call_rcu() with a handler that > will try to put it in the barn, or flush to slab pages using bulk free, > when the barn is full. Then a new empty sheaf must be obtained to put > more objects there. > > It's possible that no free sheaves are available to use for a new > rcu_free sheaf, and the allocation in kfree_rcu() context can only use > GFP_NOWAIT and thus may fail. In that case, fall back to the existing > kfree_rcu() implementation. > > Expected advantages: > - batching the kfree_rcu() operations, that could eventually replace the > existing batching > - sheaves can be reused for allocations via barn instead of being > flushed to slabs, which is more efficient > - this includes cases where only some cpus are allowed to process rcu > callbacks (Android)
nit: I would say it's more CONFIG_RCU_NOCB_CPU related. Android is just an instance of that. > > Possible disadvantage: > - objects might be waiting for more than their grace period (it is > determined by the last object freed into the sheaf), increasing memory > usage - but the existing batching does that too. > > Only implement this for CONFIG_KVFREE_RCU_BATCHED as the tiny > implementation favors smaller memory footprint over performance. > > Also for now skip the usage of rcu sheaf for CONFIG_PREEMPT_RT as the > contexts where kfree_rcu() is called might not be compatible with taking > a barn spinlock or a GFP_NOWAIT allocation of a new sheaf taking a > spinlock - the current kfree_rcu() implementation avoids doing that. > > Teach kvfree_rcu_barrier() to flush all rcu_free sheaves from all caches > that have them. This is not a cheap operation, but the barrier usage is > rare - currently kmem_cache_destroy() or on module unload. > > Add CONFIG_SLUB_STATS counters free_rcu_sheaf and free_rcu_sheaf_fail to > count how many kfree_rcu() used the rcu_free sheaf successfully and how > many had to fall back to the existing implementation. > > Signed-off-by: Vlastimil Babka <vba...@suse.cz> > --- > mm/slab.h | 3 + > mm/slab_common.c | 26 +++++ > mm/slub.c | 267 ++++++++++++++++++++++++++++++++++++++++++++++- > 3 files changed, 294 insertions(+), 2 deletions(-) > > diff --git a/mm/slab.h b/mm/slab.h > index 206987ce44a4..e82e51c44bd0 100644 > --- a/mm/slab.h > +++ b/mm/slab.h > @@ -435,6 +435,9 @@ static inline bool is_kmalloc_normal(struct kmem_cache *s) > return !(s->flags & > (SLAB_CACHE_DMA|SLAB_ACCOUNT|SLAB_RECLAIM_ACCOUNT)); > } > > +bool __kfree_rcu_sheaf(struct kmem_cache *s, void *obj); > +void flush_all_rcu_sheaves(void); > + > #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \ > SLAB_CACHE_DMA32 | SLAB_PANIC | \ > SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS | \ > diff --git a/mm/slab_common.c b/mm/slab_common.c > index e2b197e47866..005a4319c06a 100644 > --- a/mm/slab_common.c > +++ b/mm/slab_common.c > @@ -1608,6 +1608,27 @@ static void kfree_rcu_work(struct work_struct *work) > kvfree_rcu_list(head); > } > > +static bool kfree_rcu_sheaf(void *obj) > +{ > + struct kmem_cache *s; > + struct folio *folio; > + struct slab *slab; > + > + if (is_vmalloc_addr(obj)) > + return false; > + > + folio = virt_to_folio(obj); > + if (unlikely(!folio_test_slab(folio))) > + return false; > + > + slab = folio_slab(folio); > + s = slab->slab_cache; > + if (s->cpu_sheaves) > + return __kfree_rcu_sheaf(s, obj); > + > + return false; > +} > + > static bool > need_offload_krc(struct kfree_rcu_cpu *krcp) > { > @@ -1952,6 +1973,9 @@ void kvfree_call_rcu(struct rcu_head *head, void *ptr) > if (!head) > might_sleep(); > > + if (!IS_ENABLED(CONFIG_PREEMPT_RT) && kfree_rcu_sheaf(ptr)) > + return; > + > // Queue the object but don't yet schedule the batch. > if (debug_rcu_head_queue(ptr)) { > // Probable double kfree_rcu(), just leak. > @@ -2026,6 +2050,8 @@ void kvfree_rcu_barrier(void) > bool queued; > int i, cpu; > > + flush_all_rcu_sheaves(); > + > /* > * Firstly we detach objects and queue them over an RCU-batch > * for all CPUs. Finally queued works are flushed for each CPU. > diff --git a/mm/slub.c b/mm/slub.c > index cba188b7e04d..171273f90efd 100644 > --- a/mm/slub.c > +++ b/mm/slub.c > @@ -367,6 +367,8 @@ enum stat_item { > ALLOC_FASTPATH, /* Allocation from cpu slab */ > ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */ > FREE_PCS, /* Free to percpu sheaf */ > + FREE_RCU_SHEAF, /* Free to rcu_free sheaf */ > + FREE_RCU_SHEAF_FAIL, /* Failed to free to a rcu_free sheaf */ > FREE_FASTPATH, /* Free to cpu slab */ > FREE_SLOWPATH, /* Freeing not to cpu slab */ > FREE_FROZEN, /* Freeing to frozen slab */ > @@ -461,6 +463,7 @@ struct slab_sheaf { > struct rcu_head rcu_head; > struct list_head barn_list; > }; > + struct kmem_cache *cache; > unsigned int size; > void *objects[]; > }; > @@ -469,6 +472,7 @@ struct slub_percpu_sheaves { > local_trylock_t lock; > struct slab_sheaf *main; /* never NULL when unlocked */ > struct slab_sheaf *spare; /* empty or full, may be NULL */ > + struct slab_sheaf *rcu_free; /* for batching kfree_rcu() */ > }; > > /* > @@ -2531,6 +2535,8 @@ static struct slab_sheaf *alloc_empty_sheaf(struct > kmem_cache *s, gfp_t gfp) > if (unlikely(!sheaf)) > return NULL; > > + sheaf->cache = s; > + > stat(s, SHEAF_ALLOC); > > return sheaf; > @@ -2655,6 +2661,43 @@ static void sheaf_flush_unused(struct kmem_cache *s, > struct slab_sheaf *sheaf) > sheaf->size = 0; > } > > +static void __rcu_free_sheaf_prepare(struct kmem_cache *s, > + struct slab_sheaf *sheaf) > +{ > + bool init = slab_want_init_on_free(s); > + void **p = &sheaf->objects[0]; > + unsigned int i = 0; > + > + while (i < sheaf->size) { > + struct slab *slab = virt_to_slab(p[i]); > + > + memcg_slab_free_hook(s, slab, p + i, 1); > + alloc_tagging_slab_free_hook(s, slab, p + i, 1); > + > + if (unlikely(!slab_free_hook(s, p[i], init, true))) { > + p[i] = p[--sheaf->size]; > + continue; > + } > + > + i++; > + } > +} > + > +static void rcu_free_sheaf_nobarn(struct rcu_head *head) > +{ > + struct slab_sheaf *sheaf; > + struct kmem_cache *s; > + > + sheaf = container_of(head, struct slab_sheaf, rcu_head); > + s = sheaf->cache; > + > + __rcu_free_sheaf_prepare(s, sheaf); > + > + sheaf_flush_unused(s, sheaf); > + > + free_empty_sheaf(s, sheaf); > +} > + > /* > * Caller needs to make sure migration is disabled in order to fully flush > * single cpu's sheaves > @@ -2667,7 +2710,7 @@ static void sheaf_flush_unused(struct kmem_cache *s, > struct slab_sheaf *sheaf) > static void pcs_flush_all(struct kmem_cache *s) > { > struct slub_percpu_sheaves *pcs; > - struct slab_sheaf *spare; > + struct slab_sheaf *spare, *rcu_free; > > local_lock(&s->cpu_sheaves->lock); > pcs = this_cpu_ptr(s->cpu_sheaves); > @@ -2675,6 +2718,9 @@ static void pcs_flush_all(struct kmem_cache *s) > spare = pcs->spare; > pcs->spare = NULL; > > + rcu_free = pcs->rcu_free; > + pcs->rcu_free = NULL; > + > local_unlock(&s->cpu_sheaves->lock); > > if (spare) { > @@ -2682,6 +2728,9 @@ static void pcs_flush_all(struct kmem_cache *s) > free_empty_sheaf(s, spare); > } > > + if (rcu_free) > + call_rcu(&rcu_free->rcu_head, rcu_free_sheaf_nobarn); > + > sheaf_flush_main(s); > } > > @@ -2698,6 +2747,11 @@ static void __pcs_flush_all_cpu(struct kmem_cache *s, > unsigned int cpu) > free_empty_sheaf(s, pcs->spare); > pcs->spare = NULL; > } > + > + if (pcs->rcu_free) { > + call_rcu(&pcs->rcu_free->rcu_head, rcu_free_sheaf_nobarn); > + pcs->rcu_free = NULL; > + } > } > > static void pcs_destroy(struct kmem_cache *s) > @@ -2723,6 +2777,7 @@ static void pcs_destroy(struct kmem_cache *s) > */ > > WARN_ON(pcs->spare); > + WARN_ON(pcs->rcu_free); > > if (!WARN_ON(pcs->main->size)) { > free_empty_sheaf(s, pcs->main); > @@ -3780,7 +3835,7 @@ static bool has_pcs_used(int cpu, struct kmem_cache *s) > > pcs = per_cpu_ptr(s->cpu_sheaves, cpu); > > - return (pcs->spare || pcs->main->size); > + return (pcs->spare || pcs->rcu_free || pcs->main->size); > } > > /* > @@ -3840,6 +3895,77 @@ static void flush_all(struct kmem_cache *s) > cpus_read_unlock(); > } > > +static void flush_rcu_sheaf(struct work_struct *w) > +{ > + struct slub_percpu_sheaves *pcs; > + struct slab_sheaf *rcu_free; > + struct slub_flush_work *sfw; > + struct kmem_cache *s; > + > + sfw = container_of(w, struct slub_flush_work, work); > + s = sfw->s; > + > + local_lock(&s->cpu_sheaves->lock); > + pcs = this_cpu_ptr(s->cpu_sheaves); > + > + rcu_free = pcs->rcu_free; > + pcs->rcu_free = NULL; > + > + local_unlock(&s->cpu_sheaves->lock); > + > + if (rcu_free) > + call_rcu(&rcu_free->rcu_head, rcu_free_sheaf_nobarn); > +} > + > + > +/* needed for kvfree_rcu_barrier() */ > +void flush_all_rcu_sheaves(void) > +{ > + struct slub_flush_work *sfw; > + struct kmem_cache *s; > + unsigned int cpu; > + > + cpus_read_lock(); > + mutex_lock(&slab_mutex); > + > + list_for_each_entry(s, &slab_caches, list) { > + if (!s->cpu_sheaves) > + continue; > + > + mutex_lock(&flush_lock); > + > + for_each_online_cpu(cpu) { > + sfw = &per_cpu(slub_flush, cpu); > + > + /* > + * we don't check if rcu_free sheaf exists - racing > + * __kfree_rcu_sheaf() might have just removed it. > + * by executing flush_rcu_sheaf() on the cpu we make > + * sure the __kfree_rcu_sheaf() finished its > call_rcu() > + */ > + > + INIT_WORK(&sfw->work, flush_rcu_sheaf); > + sfw->skip = false; I think you don't need this sfw->skip flag since you never skip anymore, right? > + sfw->s = s; > + queue_work_on(cpu, flushwq, &sfw->work); > + } > + > + for_each_online_cpu(cpu) { > + sfw = &per_cpu(slub_flush, cpu); > + if (sfw->skip) > + continue; > + flush_work(&sfw->work); I'm sure I'm missing something but why can't we execute call_rcu() from here instead of queuing the work which does call_rcu() and then flushing all the queued work? I'm sure you have a good reason which I'm missing. > + } > + > + mutex_unlock(&flush_lock); > + } > + > + mutex_unlock(&slab_mutex); > + cpus_read_unlock(); > + > + rcu_barrier(); > +} > + > /* > * Use the cpu notifier to insure that the cpu slabs are flushed when > * necessary. > @@ -5413,6 +5539,134 @@ bool free_to_pcs(struct kmem_cache *s, void *object) > return true; > } > > +static void rcu_free_sheaf(struct rcu_head *head) > +{ > + struct slab_sheaf *sheaf; > + struct node_barn *barn; > + struct kmem_cache *s; > + > + sheaf = container_of(head, struct slab_sheaf, rcu_head); > + > + s = sheaf->cache; > + > + /* > + * This may remove some objects due to slab_free_hook() returning > false, > + * so that the sheaf might no longer be completely full. But it's > easier > + * to handle it as full (unless it became completely empty), as the > code > + * handles it fine. The only downside is that sheaf will serve fewer > + * allocations when reused. It only happens due to debugging, which > is a > + * performance hit anyway. > + */ > + __rcu_free_sheaf_prepare(s, sheaf); > + > + barn = get_node(s, numa_mem_id())->barn; > + > + /* due to slab_free_hook() */ > + if (unlikely(sheaf->size == 0)) > + goto empty; > + > + /* > + * Checking nr_full/nr_empty outside lock avoids contention in case > the > + * barn is at the respective limit. Due to the race we might go over > the > + * limit but that should be rare and harmless. > + */ > + > + if (data_race(barn->nr_full) < MAX_FULL_SHEAVES) { > + stat(s, BARN_PUT); > + barn_put_full_sheaf(barn, sheaf); > + return; > + } > + > + stat(s, BARN_PUT_FAIL); > + sheaf_flush_unused(s, sheaf); > + > +empty: > + if (data_race(barn->nr_empty) < MAX_EMPTY_SHEAVES) { > + barn_put_empty_sheaf(barn, sheaf); > + return; > + } > + > + free_empty_sheaf(s, sheaf); > +} > + > +bool __kfree_rcu_sheaf(struct kmem_cache *s, void *obj) > +{ > + struct slub_percpu_sheaves *pcs; > + struct slab_sheaf *rcu_sheaf; > + > + if (!local_trylock(&s->cpu_sheaves->lock)) > + goto fail; > + > + pcs = this_cpu_ptr(s->cpu_sheaves); > + > + if (unlikely(!pcs->rcu_free)) { > + > + struct slab_sheaf *empty; > + struct node_barn *barn; > + > + if (pcs->spare && pcs->spare->size == 0) { > + pcs->rcu_free = pcs->spare; > + pcs->spare = NULL; > + goto do_free; > + } > + > + barn = get_barn(s); > + > + empty = barn_get_empty_sheaf(barn); > + > + if (empty) { > + pcs->rcu_free = empty; > + goto do_free; > + } > + > + local_unlock(&s->cpu_sheaves->lock); > + > + empty = alloc_empty_sheaf(s, GFP_NOWAIT); > + > + if (!empty) > + goto fail; > + > + if (!local_trylock(&s->cpu_sheaves->lock)) { > + barn_put_empty_sheaf(barn, empty); > + goto fail; > + } > + > + pcs = this_cpu_ptr(s->cpu_sheaves); > + > + if (unlikely(pcs->rcu_free)) > + barn_put_empty_sheaf(barn, empty); > + else > + pcs->rcu_free = empty; > + } > + > +do_free: > + > + rcu_sheaf = pcs->rcu_free; > + > + rcu_sheaf->objects[rcu_sheaf->size++] = obj; nit: The above would result in OOB write if we ever reached here with a full rcu_sheaf (rcu_sheaf->size == rcu_sheaf->sheaf_capacity) but I think it's impossible. You always start with an empty rcu_sheaf and objects are added only here with a following check for a full rcu_sheaf. I think a short comment clarifying that would be nice. > + > + if (likely(rcu_sheaf->size < s->sheaf_capacity)) > + rcu_sheaf = NULL; > + else > + pcs->rcu_free = NULL; > + > + /* > + * we flush before local_unlock to make sure a racing > + * flush_all_rcu_sheaves() doesn't miss this sheaf > + */ > + if (rcu_sheaf) > + call_rcu(&rcu_sheaf->rcu_head, rcu_free_sheaf); > + > + local_unlock(&s->cpu_sheaves->lock); > + > + stat(s, FREE_RCU_SHEAF); > + return true; > + > +fail: > + stat(s, FREE_RCU_SHEAF_FAIL); > + return false; > +} > + > /* > * Bulk free objects to the percpu sheaves. > * Unlike free_to_pcs() this includes the calls to all necessary hooks > @@ -6909,6 +7163,11 @@ int __kmem_cache_shutdown(struct kmem_cache *s) > struct kmem_cache_node *n; > > flush_all_cpus_locked(s); > + > + /* we might have rcu sheaves in flight */ > + if (s->cpu_sheaves) > + rcu_barrier(); > + > /* Attempt to free all objects */ > for_each_kmem_cache_node(s, node, n) { > if (n->barn) > @@ -8284,6 +8543,8 @@ STAT_ATTR(ALLOC_PCS, alloc_cpu_sheaf); > STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); > STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); > STAT_ATTR(FREE_PCS, free_cpu_sheaf); > +STAT_ATTR(FREE_RCU_SHEAF, free_rcu_sheaf); > +STAT_ATTR(FREE_RCU_SHEAF_FAIL, free_rcu_sheaf_fail); > STAT_ATTR(FREE_FASTPATH, free_fastpath); > STAT_ATTR(FREE_SLOWPATH, free_slowpath); > STAT_ATTR(FREE_FROZEN, free_frozen); > @@ -8382,6 +8643,8 @@ static struct attribute *slab_attrs[] = { > &alloc_fastpath_attr.attr, > &alloc_slowpath_attr.attr, > &free_cpu_sheaf_attr.attr, > + &free_rcu_sheaf_attr.attr, > + &free_rcu_sheaf_fail_attr.attr, > &free_fastpath_attr.attr, > &free_slowpath_attr.attr, > &free_frozen_attr.attr, > -- > 2.51.0 > >